Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Front Physiol ; 3: 66, 2012.
Article in English | MEDLINE | ID: mdl-22470349

ABSTRACT

The mosquito-borne La Crosse virus (LACV; Family Bunyaviridae) may cause encephalitis, primarily in children, and is distributed throughout much of the eastern United States. No antivirals or vaccines are available for LACV, or most other mosquito-borne viruses, and prevention generally relies on mosquito control. We sought to determine whether coffee extracts could interfere with LACV replication and vector mosquito development. Both regular and decaffeinated coffee demonstrated significant reductions in LACV replication in direct antiviral assays. This activity was not due to the presence of caffeine, which did not inhibit the virus life cycle. Aedes albopictus (Skuse; Diptera: Culicidae) mosquito larvae suffered near total mortality when reared in high concentrations of regular and decaffeinated coffee and in caffeine. Following larval exposure to sublethal coffee concentrations, adult A. albopictus mosquitoes had significantly reduced whole-body LACV titers 5 days post-infection, compared to larvae reared in distilled water. These results suggest that it may be possible to both control mosquito populations and alter the vector competence of mosquitoes for arthropod-borne viruses by introducing antiviral compounds into the larval habitat.

3.
J Med Entomol ; 48(2): 389-94, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21485378

ABSTRACT

Aedes albopictus (Skuse) is a potential vector for many arboviruses, including La Crosse virus (LACV), the leading cause of pediatric encephalitis in North America. Bacteria isolated from the midgut and diverticula of field-caught female Ae. albopictus were cultured and identified using 16S ribosomal RNA gene amplification and sequencing. Members of seven and six bacterial families were identified from the midguts and diverticula, respectively, with nearly half of the isolates identified to the family Enterobacteriaceae. Many are related to bacteria identified in other invertebrates, and several may represent previously unknown species or genera. Of the 24 isolated bacteria, 12 (50%) showed a significant reduction in infectivity of LACV for Vero cells. Inhibition of infectivity ranged from 0 to 44% and was not dependent on bacterial classification. The antiviral activity of these bacteria warrants further investigation as an alternate means to interrupt the LACV transmission cycle.


Subject(s)
Aedes/microbiology , Gastrointestinal Tract/microbiology , La Crosse virus/isolation & purification , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Female , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
4.
Am J Trop Med Hyg ; 75(5): 886-92, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17123982

ABSTRACT

Dengue viruses causing severe, hemorrhagic disease have displaced less virulent strains in the Americas during the past three decades. The American (AM) genotype of dengue serotype 2 has been endemic in the Western Hemisphere and South Pacific, causing outbreaks of dengue fever (DF), but has not been linked to dengue hemorrhagic fever (DHF). The Southeast Asian (SEA) genotype of dengue was introduced into this hemisphere in 1981, has caused outbreaks with numerous cases of DHF, and has displaced the AM genotype in several countries. We investigated the effect of viral genotype on the potential for transmission by infecting Aedes aegypti mosquitoes collected in South Texas with six viruses, representing these two genotypes. Viral replication in the midgut was significantly higher in SEA-infected mosquitoes, and virus-specific proteins could be detected in salivary glands 7 days earlier in SEA- than AM-infected mosquitoes. This much earlier appearance of dengue virus in salivary glands resulted in an estimated 2- to 65-fold increase in the vectorial capacity of these mosquitoes for the viruses that can cause DHF. This may be one of the mechanisms through which more virulent flaviviruses spread and displace others globally.


Subject(s)
Aedes/physiology , Aedes/virology , Dengue Virus/classification , Dengue/transmission , Insect Vectors/virology , Animals , Dengue/virology , Dengue Virus/genetics , Dengue Virus/physiology , Genotype , RNA, Viral/analysis , RNA, Viral/chemistry , Virulence , Virus Replication
5.
Genetica ; 127(1-3): 163-75, 2006 May.
Article in English | MEDLINE | ID: mdl-16850221

ABSTRACT

Ochlerotatus triseriatus is the natural vector of La Crosse virus, a common cause of pediatric encephalitis in the United States; the closely related Ochlerotatus hendersoni transmits this virus at low frequency. Adults of these mosquito species are difficult to distinguish morphologically; however, the larval stages show species-specific differences in several characters. We identified genomic regions contributing to the differences between the larvae of these species through interspecific hybridizations. Quantitative trait loci (QTL) were identified by standard interval mapping techniques and by univariate marker association analyses. We examined 159 F(2) progeny from an Oc. hendersoni female by Oc. triseriatus male interspecific cross for variation in the number of saddle and siphon hair branches, attachment of the acus, and morphology of the anal papillae. At least one putative QTL was identified for each of the phenotypes examined. QTL most commonly mapped to linkage group (LG) III, although QTL were identified on LGI and LGII for three phenotypes each. Several of these QTL, and particularly those on LGIII, also map to genome regions controlling adult female body size and ability to orally transmit La Crosse virus. Further studies are required to elucidate the relationships among these traits and the impact they may have had on the ecological specialization and speciation of these mosquitoes.


Subject(s)
Crosses, Genetic , Larva/anatomy & histology , Larva/genetics , Ochlerotatus/genetics , Quantitative Trait Loci , Alleles , Animals , Chromosome Mapping , Chromosomes , Female , Genetic Speciation , Genome, Insect , Heterozygote , Likelihood Functions , Linear Models , Male , Phenotype
6.
Genetics ; 169(3): 1529-39, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15654112

ABSTRACT

La Crosse virus is a leading cause of pediatric encephalitis in the United States. The mosquito Ochlerotatus triseriatus is an efficient vector for La Crosse virus, whereas the closely related O. hendersoni transmits only at very low rates. Quantitative trait loci (QTL) affecting the ability to orally transmit this virus and adult body size were identified in 164 F(2) female individuals from interspecific crosses of O. hendersoni females and O. triseriatus males using a combination of composite interval mapping (CIM), interval mapping (IM) for binary traits, and single-marker mapping. For oral transmission (OT), no genome locations exceeded the 95% experimentwise threshold for declaring a QTL using IM, but single-marker analysis identified four independent regions significantly associated with OT that we considered as tentative QTL. With two QTL, an increase in OT was associated with alleles from the refractory vector, O. hendersoni, and likely reflect epistatic interactions between genes that were uncovered by our interspecific crosses. For body size, two QTL were identified using CIM and a third tentative QTL was identified using single-marker analysis. The genome regions associated with body size also contain three QTL controlling OT, suggesting that these regions contain either single genes with pleiotropic effects or multiple linked genes independently determining each trait.


Subject(s)
Genetic Vectors , La Crosse virus/genetics , Ochlerotatus/genetics , Ochlerotatus/virology , Animals , Body Size , Female , Genetic Markers , Hybridization, Genetic , Male , Molecular Sequence Data , Ochlerotatus/anatomy & histology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...