Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Fish Shellfish Immunol ; 137: 108739, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37061071

ABSTRACT

Fish skin is critical to physical defence against pathogens and there is a need to understand the physiological processes impacting ulcers and their healing. Ulcers have been reported in farmed Chinook salmon in New Zealand. This study investigated stress, immune and structural gene expression in farmed Chinook salmon skin with and without ulcers from two sites in New Zealand sampled from February (higher temperature, late summer) to May (lower temperature, late autumn). Skin samples taken adjacent to non-specific ulcers in May and control fish in February demonstrated upregulation of heat shock protein 70 relative to control fish in May. Anterior gradient 2 expression was upregulated in fish with ulcers relative to control fish (both February and May), suggesting increased mucous cell activity. Based on the results of this study, fish with non-specific ulcers showed evidence of stress, inflammation, re-epithelisation, and delayed healing near the ulcer site, elucidating the importance of these processes in the pathogenesis of non-specific ulcers in farmed chinook salmon.


Subject(s)
Fish Diseases , Salmon , Animals , Salmon/genetics , Ulcer , Inflammation/genetics , Inflammation/veterinary , New Zealand , Fish Diseases/pathology
2.
Ecotoxicology ; 31(7): 1068-1077, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36006498

ABSTRACT

Old lead-zinc (Pb-Zn) mining sites in Greenland have increased the environmental concentration of Pb in local marine organisms, including the shorthorn sculpin. Organ metal concentrations and histopathology have been used in environmental monitoring programs to evaluate metal exposure and subsequent effects in shorthorn sculpins. So far, no study has reported the impact of heavy metals on gene expression involved in metal-related stress and immune responses in sculpins. The aim of this study was to investigate the effect of exposure to environmentally relevant waterborne Pb (0.73 ± 0.35 µg/L) on hepatic gene expression of metallothionein (mt), immunoglobulin M (igm), and microRNAs (miRNAs; mir132 and mir155) associated with immune responses in the shorthorn sculpin compared to a control group. The mt and igm expression were upregulated in the Pb-exposed group compared to the control group. The transcripts of mir132 and mir155 were not different in sculpins between the Pb-exposed and control group; however, miRNA levels were significantly correlated with Pb liver concentrations. Furthermore, there was a positive correlation between liver Pb concentrations and igm, and a positive relationship between igm and mir155. The results indicate that exposure to Pb similar to those concentrations reported in in marine waters around Greenland Pb-Zn mine sites influences the mt and immune responses in shorthorn sculpins. This is the first study to identify candidate molecular markers in the shorthorn sculpins exposed to waterborne environmentally relevant Pb suggesting mt and igm as potential molecular markers of exposure to be applied in future assessments of the marine environment near Arctic mining sites.


Subject(s)
MicroRNAs , Perciformes , Animals , Environmental Monitoring , Immunoglobulin M , Lead/toxicity , MicroRNAs/genetics , Mining
4.
Fish Shellfish Immunol ; 124: 28-38, 2022 May.
Article in English | MEDLINE | ID: mdl-35367374

ABSTRACT

Little is known about host responses of farmed Chinook salmon with skin lesions, despite the lesions being associated with increased water temperatures and elevated mortality rates. To address this shortfall, a transcriptomic approach was used to characterise the molecular landscape of spot lesions, the most commonly reported lesion type in New Zealand Chinook salmon, versus healthy appearing skin in fish with and without spot lesions. Many biological (gene ontology) pathways were enriched in lesion adjacent tissue, relative to control skin tissue, including proteolysis, fin regeneration, calcium ion binding, mitochondrial transport, actin cytoskeleton organisation, epithelium development, and tissue development. In terms of specific transcripts of interest, pro-inflammatory cytokines (interleukin 1ß and tumour necrosis factor), annexin A1, mucin 2, and calreticulin were upregulated, while cathepsin H, mucin 5AC, and perforin 1 were downregulated in lesion tissue. In some instances, changes in gene expression were consistent between lesion and healthy appearing skin from the same fish relative to lesion free fish, suggesting that host responses weren't limited to the site of the lesion. Goblet cell density in skin histological sections was not different between skin sample types. Collectively, these results provide insights into the physiological changes associated with common spot lesions in farmed Chinook salmon.


Subject(s)
Fish Diseases , Skin Diseases , Animals , Fish Diseases/pathology , New Zealand , Salmon/physiology , Transcriptome
5.
Rev Fish Biol Fish ; 32(1): 189-207, 2022.
Article in English | MEDLINE | ID: mdl-33679009

ABSTRACT

Humans have relied on coastal resources for centuries. However, current growth in population and increased accessibility of coastal resources through technology have resulted in overcrowded and often conflicted spaces. The recent global move towards development of national blue economy strategies further highlights the increased focus on coastal resources to address a broad range of blue growth industries. The need to manage sustainable development and future exploitation of both over-utilised and emergent coastal resources is both a political and environmental complexity. To address this complexity, we draw on the perspectives of a multi-disciplinary team, utilising two in depth exemplary case studies in New Zealand and within the Myanmar Delta Landscape, to showcase barriers, pathways and actions that facilitate a move from Business as Usual (BAU) to a future aligned with the Sustainable Development Goals (SDGs) and the UN International Decade of Ocean Science for Sustainable Development 2021-2030. We provide key recommendations to guide interest groups, and nations globally, towards sustainable utilisation, conservation and preservation of their marine environments in a fair and equitable way, and in collaboration with those who directly rely upon coastal ecosystems. We envision a sustainable future driven by conflict mitigation and resolution,  where:(i)Change is motivated and facilitated(ii)Coastal ecosystems are co-managed by multiple reliant groups(iii)Networks that maintain and enhance biodiversity are implemented(iv)Decision-making is equitable and based on ecosystem services(v)Knowledge of the marine realm is strengthened-'mapping the ocean of life'(vi)The interests of diverse user groups are balanced with a fair distribution of benefits.

6.
Rev Fish Biol Fish ; 32(1): 145-160, 2022.
Article in English | MEDLINE | ID: mdl-34366578

ABSTRACT

In the age of the Anthropocene, the ocean has typically been viewed as a sink for pollution. Pollution is varied, ranging from human-made plastics and pharmaceutical compounds, to human-altered abiotic factors, such as sediment and nutrient runoff. As global population, wealth and resource consumption continue to grow, so too does the amount of potential pollution produced. This presents us with a grand challenge which requires interdisciplinary knowledge to solve. There is sufficient data on the human health, social, economic, and environmental risks of marine pollution, resulting in increased awareness and motivation to address this global challenge, however a significant lag exists when implementing strategies to address this issue. This review draws upon the expertise of 17 experts from the fields of social sciences, marine science, visual arts, and Traditional and First Nations Knowledge Holders to present two futures; the Business-As-Usual, based on current trends and observations of growing marine pollution, and a More Sustainable Future, which imagines what our ocean could look like if we implemented current knowledge and technologies. We identify priority actions that governments, industry and consumers can implement at pollution sources, vectors and sinks, over the next decade to reduce marine pollution and steer us towards the More Sustainable Future. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-021-09674-8.

7.
Rev Fish Biol Fish ; 32(1): 39-63, 2022.
Article in English | MEDLINE | ID: mdl-34566277

ABSTRACT

Proactive and coordinated action to mitigate and adapt to climate change will be essential for achieving the healthy, resilient, safe, sustainably harvested and biodiverse ocean that the UN Decade of Ocean Science and sustainable development goals (SDGs) seek. Ocean-based mitigation actions could contribute 12% of the emissions reductions required by 2030 to keep warming to less than 1.5 ºC but, because substantial warming is already locked in, extensive adaptation action is also needed. Here, as part of the Future Seas project, we use a "foresighting/hindcasting" technique to describe two scenarios for 2030 in the context of climate change mitigation and adaptation for ocean systems. The "business-as-usual" future is expected if current trends continue, while an alternative future could be realised if society were to effectively use available data and knowledge to push as far as possible towards achieving the UN SDGs. We identify three drivers that differentiate between these alternative futures: (i) appetite for climate action, (ii) handling extreme events, and (iii) climate interventions. Actions that could navigate towards the optimistic, sustainable and technically achievable future include:(i)proactive creation and enhancement of economic incentives for mitigation and adaptation;(ii)supporting the proliferation of local initiatives to spur a global transformation;(iii)enhancing proactive coastal adaptation management;(iv)investing in research to support adaptation to emerging risks;(v)deploying marine-based renewable energy;(vi)deploying marine-based negative emissions technologies;(vii)developing and assessing solar radiation management approaches; and(viii)deploying appropriate solar radiation management approaches to help safeguard critical ecosystems. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-021-09678-4.

8.
J Fish Biol ; 97(3): 607-632, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32564350

ABSTRACT

Ambient temperature modulates reproductive processes, especially in poikilotherms such as teleosts. Consequently, global warming is expected to impact the reproductive function of fish, which has implications for wild population dynamics, fisheries and aquaculture. In this extensive review spanning tropical and cold-water environments, we examine the impact of higher-than-optimal temperatures on teleost reproductive development and physiology across reproductive stages, species, generations and sexes. In doing so, we demonstrate that warmer-than-optimal temperatures can affect every stage of reproductive development from puberty through to the act of spawning, and these responses are mediated by age at spawning and are associated with changes in physiology at multiple levels of the brain-pituitary-gonad axis. Response to temperature is often species-specific and changes with environmental history/transgenerational conditioning, and the amplitude, timing and duration of thermal exposure within a generation. Thermally driven changes to physiology, gamete development and maturation typically culminate in poor sperm and oocyte quality, and/or advancement/delay/inhibition of ovulation/spermiation and spawning. Although the field of teleost reproduction and temperature is advanced in many respects, we identify areas where research is lacking, especially for males and egg quality from "omics" perspectives. Climate-driven warming will continue to disturb teleost reproductive performance and therefore guide future research, especially in the emerging areas of transgenerational acclimation and epigenetic studies, which will help to understand and project climate change impacts on wild populations and could also have implications for aquaculture.


Subject(s)
Climate Change , Fishes/physiology , Gametogenesis/physiology , Reproduction/physiology , Temperature , Acclimatization/physiology , Animals , Fisheries , Population Dynamics
9.
Sci Rep ; 10(1): 9677, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32541862

ABSTRACT

The collection and presentation of accurate reproductive data from wild fish has historically been somewhat problematic, especially for serially spawning species. Therefore, the aim of the current study was to develop a novel method of assessing female spawning status that is robust to variation in oocyte dynamics between specimens. Atlantic cod (Barents Sea stock) were used to develop the new 'ultrametric' method, that is based on the progressive depletion of the vitellogenic oocyte pool relative to the rather constant previtellogenic oocyte (PVO) pool. Fish were subsequently partitioned into one of four categories that accurately reflected changes in their oocyte size frequency distribution characteristics and gonadosomatic index throughout spawning. The ultrametric method overcomes difficulties associated with presence of bimodal oocyte distributions, oocyte tails, lack of clear hiatus region, and presence of free ova, and can be implemented at a single sampling point. Much of the workflow is fully automated, and the technique may circumvent the need for histological analysis depending on the desired outcome. The ultrametric method differs from the traditional autodiametric method in that PVOs can be separated by ultrasonication and then enumerated, and ovarian homogeneity is not a mandatory requirement per se. The method is designed for determinate spawners but might be extended to include indeterminate spawners.


Subject(s)
Gadus morhua/physiology , Oocytes/metabolism , Oviposition , Animals , Automation , Female , Organ Size , Vitellogenesis , Workflow
10.
J Fish Biol ; 93(4): 694-710, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30232812

ABSTRACT

The giant grouper Epinephelus lanceolatus is an ecologically vulnerable species with high market demand. However, efforts to improve larval husbandry are hindered by a lack of knowledge surrounding larval developmental physiology. To address this shortfall, a transcriptomic approach was applied to larvae between 1 and 14 days post hatch (dph) to characterise the molecular ontogenesis of genes that influence appetite and digestion. Appetite regulating factors were detected from 1 dph, including neuropeptide Y, nesfatin-1, cocaine and amphetamine regulated transcript, cholecystokinin and pituitary adenylate cyclase activating peptide and the expression level of several genes changed sharply with the onset of exogenous feeding. The level of expression for proteases, chitinases, lipases and amylases typically followed one of two expression patterns, a general increase as development progressed, or an inverted U-shape with maximal expression at c. 6 dph. Similarly, the tendency among both expression patterns was for the level of expression to increase around the time of mouth-opening. There was also evidence to suggest the presence of putative isoforms for several digestion-related genes. We have provided an insight into appetite-regulation and digestive processes in groupers during early larval development and have developed a transcriptomic database that will aid future efforts to rear this species in an aquaculture setting.


Subject(s)
Appetite Regulation , Bass/growth & development , Bass/metabolism , Digestion , Transcriptome , Animals , Appetite , Aquaculture , Chitinases/metabolism , Databases, Factual , Endopeptidases/metabolism , Female , Larva/metabolism , Lipase/metabolism , Male , Neuropeptide Y/metabolism , Peptide Hydrolases/metabolism , Seafood , Trypsinogen/metabolism
11.
Gene ; 661: 95-108, 2018 Jun 30.
Article in English | MEDLINE | ID: mdl-29604465

ABSTRACT

The orange-spotted grouper (OG), Epinephelus coioides, is an ecologically and economically important species with strong market demand. However, larval rearing for this species is especially difficult, with mass mortality occurring at multiple stages including the period coinciding with metamorphic development. The aim of the present study was to characterise the molecular ontogenesis of genes that influence appetite, feeding, and digestion in OG larvae head and body tissue at 12, 18, and 50 days post hatch (dph), which coincides with the beginning and end of metamorphic development. The sequences of many transcripts involved in the regulation of appetite, feeding and digestive processes were detected from 12 dph in OG larvae, including those that were differentially expressed in body tissue in fish at different stages of development such as cholecystokinin, peptide Y, and meprin A. Of the transcripts encoding digestive enzymes, only the expression level of bile salt-activated lipase decreased as development progressed. In contrast, a dramatic increase in expression for other body-expressed transcripts encoding digestive enzymes and a proton pump subunit was observed at 50 dph, which is indicative of an increase in digestive capacity. In addition, we have provided evidence suggesting that various trypsinogen isoforms are present, and have differing expression patterns throughout larval development in whole body tissue. We also report on the presence of a prey-specific transcript encoding α-amylase that was present in the body-transcriptome. Taken together, these results give insight into the processes underpinning attainment of digestive capacity, and form the basis of a new transcriptomic database that will aid further study into the digestive development and dietary requirements of orange-spotted grouper larvae.


Subject(s)
Bass/growth & development , Bass/genetics , Digestion/genetics , Metamorphosis, Biological/genetics , Transcriptome , Animals , Bass/metabolism , Cloning, Molecular , Gene Expression Profiling , Larva/genetics , Larva/growth & development
12.
PeerJ ; 5: e3897, 2017.
Article in English | MEDLINE | ID: mdl-29109909

ABSTRACT

In female Atlantic salmon (Salmo salar), exposure to warm summer temperatures causes a reduction in plasma 17ß-estradiol (E2), which impairs downstream vitellogenesis and zonagenesis, and reduces egg fertility and embryo survival. The aim of the present study was to determine whether E2-treatment could offset thermal impairment of endocrine function and maintain egg quality in maiden (first-time-spawning) S. salar reared at 22 °C. Treatment with E2 at 22 °C stimulated vitellogenin (vtg) gene expression and subsequent protein synthesis which promoted oocyte growth and increased egg size relative to untreated fish at 14 and 22 °C. However, E2-treatment at 22 °C was not associated with an increase in egg fertility and embryo survival relative to untreated fish at 22 °C, despite the positive effects of E2-treatment on vitellogenesis and oocyte growth. As there was no evidence to suggest that the estrogen receptor alpha expression was suppressed by high temperature, this could be due to the lack of stimulation on zonagenesis by E2-treatment observed at high temperature during oocyte development. Our results demonstrate that treatment with E2 is not able to maintain zonagenesis or egg quality in maiden S. salar at high temperature, even when vtg gene expression, protein synthesis and subsequent oocyte growth is promoted. This implies that the mechanisms regulating zonagenesis, but not vitellogenesis are impaired at elevated temperature in female S. salar broodstock, and highlights the remarkable complexity of thermally induced endocrine disruption in fish.

13.
PeerJ ; 5: e3898, 2017.
Article in English | MEDLINE | ID: mdl-29062601

ABSTRACT

Tasmanian Atlantic salmon (S. salar) broodstock can experience temperatures above 20 °C, which impairs reproductive development and inhibits ovulation. The present study investigated the prolonged use of gonadotropin releasing hormone analogue (GnRHa) during vitellogenesis as a means of maintaining endocrine function and promoting egg quality at elevated temperature in maiden and repeat spawning S. salar. GnRHa-treatment during vitellogenesis did not compensate for the negative effects of thermal challenge on the timing of ovulation, egg size, egg fertility or embryo survival in any fish maintained at 22 °C relative to 14 °C. The lack of effectiveness was reflected by the endocrine data, as plasma follicle stimulating hormone and luteinising hormone levels were not different between treated and untreated groups at 22 °C. Furthermore, plasma testosterone and E2 levels were unchanged in GnRHa-treated fish at 22 °C, and plasma levels were generally lower in both groups maintained at 22 °C relative to 14 °C. Transcription of vitellogenin, and zona pellucida B and C was not enhanced in GnRHa-treated fish relative to untreated fish at 22 °C, presumably due to observed suppression of plasma E2. These results indicate that thermal impairment of reproduction is likely to occur on multiple levels, and is difficult to overcome via hormonal manipulation.

14.
Mol Ecol ; 25(19): 4836-49, 2016 10.
Article in English | MEDLINE | ID: mdl-27543886

ABSTRACT

Marine organisms need to adapt in order to cope with the adverse effects of ocean acidification and warming. Transgenerational exposure to CO2 stress has been shown to enhance resilience to ocean acidification in offspring from a number of species. However, the molecular basis underlying such adaptive responses is currently unknown. Here, we compared the transcriptional profiles of two genetically distinct oyster breeding lines following transgenerational exposure to elevated CO2 in order to explore the molecular basis of acclimation or adaptation to ocean acidification in these organisms. The expression of key target genes associated with antioxidant defence, metabolism and the cytoskeleton was assessed in oysters exposed to elevated CO2 over three consecutive generations. This set of target genes was chosen specifically to test whether altered responsiveness of intracellular stress mechanisms contributes to the differential acclimation of oyster populations to climate stressors. Transgenerational exposure to elevated CO2 resulted in changes to both basal and inducible expression of those key target genes (e.g. ecSOD, catalase and peroxiredoxin 6), particularly in oysters derived from the disease-resistant, fast-growing B2 line. Exposure to CO2 stress over consecutive generations produced opposite and less evident effects on transcription in a second population that was derived from wild-type (nonselected) oysters. The analysis of key target genes revealed that the acute responses of oysters to CO2 stress appear to be affected by population-specific genetic and/or phenotypic traits and by the CO2 conditions to which their parents had been exposed. This supports the contention that the capacity for heritable change in response to ocean acidification varies between oyster breeding lines and is mediated by parental conditioning.


Subject(s)
Acclimatization/genetics , Acids/chemistry , Climate Change , Ostreidae/genetics , Seawater/chemistry , Animals , Hydrogen-Ion Concentration , New South Wales , Transcriptome
15.
PLoS One ; 10(3): e0118839, 2015.
Article in English | MEDLINE | ID: mdl-25768438

ABSTRACT

Many microarray and suppression subtractive hybridization (SSH) studies have analyzed the effects of environmental stress on gene transcription in marine species. However, there have been no unifying analyses of these data to identify common stress response pathways. To address this shortfall, we conducted a meta-analysis of 14 studies that investigated the effects of different environmental stressors on gene expression in oysters. The stressors tested included chemical contamination, hypoxia and infection, as well as extremes of temperature, pH and turbidity. We found that the expression of over 400 genes in a range of oyster species changed significantly after exposure to environmental stress. A repeating pattern was evident in these transcriptional responses, regardless of the type of stress applied. Many of the genes that responded to environmental stress encoded proteins involved in translation and protein processing (including molecular chaperones), the mitochondrial electron transport chain, anti-oxidant activity and the cytoskeleton. In light of these findings, we put forward a consensus model of sub-cellular stress responses in oysters.


Subject(s)
Environment , Oligonucleotide Array Sequence Analysis/methods , Ostreidae/genetics , Ostreidae/physiology , Stress, Physiological/genetics , Subtractive Hybridization Techniques/methods , Transcription, Genetic , Animals , Ostreidae/metabolism
16.
BMC Res Notes ; 5: 21, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22233607

ABSTRACT

BACKGROUND: The use of quantitative real-time polymerase chain reaction (qPCR) has become widespread due to its specificity, sensitivity and apparent ease of use. However, experimental error can be introduced at many stages during sample processing and analysis, and for this reason qPCR data are often normalised to an internal reference gene. The present study used three freely available algorithms (GeNorm, NormFinder and BestKeeper) to assess the stability of hepatically expressed candidate reference genes (Hprt1, Tbp, Ef1α and ß-tubulin) in two experiments. In the first, female Atlantic salmon (Salmo salar) broodstock of different ages were reared at either 14 or 22 °C for an entire reproductive season, therefore a reference gene that does not respond to thermal challenge or reproductive condition was sought. In the second, estrogen treated juvenile salmon were maintained at the same temperatures for 14 days and a reference gene that does not respond to temperature or estrogen was required. Additionally, we performed independent statistic analysis to validate the outputs obtained from the program based analysis. RESULTS: Based on the independent statistical analysis performed the stability of the genes tested was Tbp > Ef1α > Hprt1 > ß-tubulin for the temperature/reproductive development experiment and Ef1α > Hprt1 > Tbp for the estrogen administration experiment (ß-tubulin was not analysed). Results from the algorithms tested were quite ambiguous for both experiments; however all programs consistently identified the least stable candidate gene. BestKeeper provided rankings that were consistent with the independent analysis for both experiments. When an inappropriate candidate reference gene was used to normalise the expression of a hepatically expressed target gene, the ability to detect treatment-dependent changes in target gene expression was lost for multiple groups in both experiments. CONCLUSIONS: We have highlighted the need to independently validate the results of reference gene selection programs. In addition, we have provided a reference point for those wishing to study the effects of thermal challenge and/or hormonal treatment on gene stability in Atlantic salmon and other teleost species.


Subject(s)
Fish Proteins/genetics , Hypoxanthine Phosphoribosyltransferase/genetics , Peptide Elongation Factor 1/genetics , Salmo salar/genetics , TATA-Box Binding Protein/genetics , Tubulin/genetics , Animals , Female , Gene Expression Regulation, Developmental , Liver/growth & development , Liver/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reference Standards , Reverse Transcriptase Polymerase Chain Reaction/standards , Salmo salar/growth & development , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...