Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(24): 246502, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38949367

ABSTRACT

Disorder at etched edges of graphene quantum dots (GQD) enables random all-to-all interactions between localized charges in partially filled Landau levels, providing a potential platform to realize the Sachdev-Ye-Kitaev (SYK) model. We use quantum Hall edge states in the graphene electrodes to measure electrical conductance and thermoelectric power across the GQD. In specific temperature ranges, we observe a suppression of electric conductance fluctuations and slowly decreasing thermoelectric power across the GQD with increasing temperature, consistent with recent theory for the SYK regime.

2.
Bioscience ; 72(6): 521-537, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35677290

ABSTRACT

The invasive plant Alliaria petiolata (garlic mustard) has spread throughout forest understory and edge communities in much of North America, but its persistence, density, and impacts have varied across sites and time. Surveying the literature since 2008, we evaluated both previously proposed and new mechanisms for garlic mustard's invasion success and note how they interact and vary across ecological contexts. We analyzed how and where garlic mustard has been studied and found a lack of multisite and longitudinal studies, as well as regions that may be under- or overstudied, leading to poor representation for understanding and predicting future invasion dynamics. Inconsistencies in how sampling units are scaled and defined can also hamper our understanding of invasive species. We present new conceptual models for garlic mustard invasion from a macrosystems perspective, emphasizing the importance of synergies and feedbacks among mechanisms across spatial and temporal scales to produce variable ecological contexts.

3.
Integr Comp Biol ; 61(6): 2145-2153, 2022 02 05.
Article in English | MEDLINE | ID: mdl-33940632

ABSTRACT

The current environmental changes stressing the Earth's biological systems urgently require study from an integrated perspective to reveal unexpected, cross-scale interactions, particularly between microbes and macroscale phenomena. Such interactions are the basis of a mechanistic understanding of the important connections between deforestation and emerging infectious disease, feedback between ecosystem disturbance and the gut microbiome, and the cross-scale effects of environmental pollutants. These kinds of questions can be answered with existing techniques and data, but a concerted effort is necessary to better coordinate studies and data sets from different disciplines to fully leverage their potential.


Subject(s)
Ecosystem , Gastrointestinal Microbiome , Animals , Biology
4.
Nat Nanotechnol ; 17(2): 166-173, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34782778

ABSTRACT

In low-dimensional systems, the combination of reduced dimensionality, strong interactions and topology has led to a growing number of many-body quantum phenomena. Thermal transport, which is sensitive to all energy-carrying degrees of freedom, provides a discriminating probe of emergent excitations in quantum materials and devices. However, thermal transport measurements in low dimensions are dominated by the phonon contribution of the lattice, requiring an experimental approach to isolate the electronic thermal conductance. Here we measured non-local voltage fluctuations in a multi-terminal device to reveal the electronic heat transported across a mesoscopic bridge made of low-dimensional materials. Using two-dimensional graphene as a noise thermometer, we measured the quantitative electronic thermal conductance of graphene and carbon nanotubes up to 70 K, achieving a precision of ~1% of the thermal conductance quantum at 5 K. Employing linear and nonlinear thermal transport, we observed signatures of energy transport mediated by long-range interactions in one-dimensional electron systems, in agreement with a theoretical model.

5.
Ecol Evol ; 11(9): 3660-3671, 2021 May.
Article in English | MEDLINE | ID: mdl-33976765

ABSTRACT

Biodiversity is a complex, yet essential, concept for undergraduate students in ecology and other natural sciences to grasp. As beginner scientists, students must learn to recognize, describe, and interpret patterns of biodiversity across various spatial scales and understand their relationships with ecological processes and human influences. It is also increasingly important for undergraduate programs in ecology and related disciplines to provide students with experiences working with large ecological datasets to develop students' data science skills and their ability to consider how ecological processes that operate at broader spatial scales (macroscale) affect local ecosystems. To support the goals of improving student understanding of macroscale ecology and biodiversity at multiple spatial scales, we formed an interdisciplinary team that included grant personnel, scientists, and faculty from ecology and spatial sciences to design a flexible learning activity to teach macroscale biodiversity concepts using large datasets from the National Ecological Observatory Network (NEON). We piloted this learning activity in six courses enrolling a total of 109 students, ranging from midlevel ecology and GIS/remote sensing courses, to upper-level conservation biology. Using our classroom experiences and a pre/postassessment framework, we evaluated whether our learning activity resulted in increased student understanding of macroscale ecology and biodiversity concepts and increased familiarity with analysis techniques, software programs, and large spatio-ecological datasets. Overall, results suggest that our learning activity improved student understanding of biological diversity, biodiversity metrics, and patterns of biodiversity across several spatial scales. Participating faculty reflected on what went well and what would benefit from changes, and we offer suggestions for implementation of the learning activity based on this feedback. This learning activity introduced students to macroscale ecology and built student skills in working with big data (i.e., large datasets) and performing basic quantitative analyses, skills that are essential for the next generation of ecologists.

6.
Nat Nanotechnol ; 16(5): 563-569, 2021 May.
Article in English | MEDLINE | ID: mdl-33633404

ABSTRACT

Interferometers probe the wave-nature and exchange statistics of indistinguishable particles-for example, electrons in the chiral one-dimensional edge channels of the quantum Hall effect (QHE). Quantum point contacts can split and recombine these channels, enabling interference of charged particles. Such quantum Hall interferometers (QHIs) can unveil the exchange statistics of anyonic quasi-particles in the fractional quantum Hall effect (FQHE). Here, we present a fabrication technique for QHIs in van der Waals (vdW) materials and realize a tunable, graphene-based Fabry-Pérot (FP) QHI. The graphite-encapsulated architecture allows observation of FQHE at a magnetic field of 3T and precise partitioning of integer and fractional edge modes. We measure pure Aharonov-Bohm interference in the integer QHE, a major technical challenge in small FP interferometers, and find that edge modes exhibit high-visibility interference due to large velocities. Our results establish vdW heterostructures as a versatile alternative to GaAs-based interferometers for future experiments targeting anyonic quasi-particles.

7.
Phys Rev Lett ; 127(25): 257701, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-35029442

ABSTRACT

We have measured Coulomb drag between an individual single-walled carbon nanotube (SWNT) as a one-dimensional (1D) conductor and the two-dimensional (2D) conductor monolayer graphene, separated by a few-atom-thick boron nitride layer. The graphene carrier density is tuned across the charge neutrality point (CNP) by a gate, while the SWNT remains degenerate. At high temperatures, the drag resistance changes sign across the CNP, as expected for momentum transfer from drive to drag layer, and exhibits layer exchange Onsager reciprocity. We find that layer reciprocity is broken near the graphene CNP at low temperatures due to nonlinear drag response associated with temperature dependent drag and thermoelectric effects. The drag resistance shows power-law dependences on temperature and carrier density characteristic of 1D Fermi liquid-2D Dirac fluid drag. The 2D drag signal at high temperatures decays with distance from the 1D source slower than expected for a diffusive current distribution, suggesting additional interaction effects in the graphene in the hydrodynamic transport regime.

8.
Nature ; 583(7817): 537-541, 2020 07.
Article in English | MEDLINE | ID: mdl-32699401

ABSTRACT

The electron-hole plasma in charge-neutral graphene is predicted to realize a quantum critical system in which electrical transport features a universal hydrodynamic description, even at room temperature1,2. This quantum critical 'Dirac fluid' is expected to have a shear viscosity close to a minimum bound3,4, with an interparticle scattering rate saturating1 at the Planckian time, the shortest possible timescale for particles to relax. Although electrical transport measurements at finite carrier density are consistent with hydrodynamic electron flow in graphene5-8, a clear demonstration of viscous flow at the charge-neutrality point remains elusive. Here we directly image viscous Dirac fluid flow in graphene at room temperature by measuring the associated stray magnetic field. Nanoscale magnetic imaging is performed using quantum spin magnetometers realized with nitrogen vacancy centres in diamond. Scanning single-spin and wide-field magnetometry reveal a parabolic Poiseuille profile for electron flow in a high-mobility graphene channel near the charge-neutrality point, establishing the viscous transport of the Dirac fluid. This measurement is in contrast to the conventional uniform flow profile imaged in a metallic conductor and also in a low-mobility graphene channel. Via combined imaging and transport measurements, we obtain viscosity and scattering rates, and observe that these quantities are comparable to the universal values expected at quantum criticality. This finding establishes a nearly ideal electron fluid in charge-neutral, high-mobility graphene at room temperature4. Our results will enable the study of hydrodynamic transport in quantum critical fluids relevant to strongly correlated electrons in high-temperature superconductors9. This work also highlights the capability of quantum spin magnetometers to probe correlated electronic phenomena at the nanoscale.

10.
Conserv Biol ; 32(5): 1150-1161, 2018 10.
Article in English | MEDLINE | ID: mdl-29781169

ABSTRACT

Landscape-scale alterations that accompany urbanization may negatively affect the population structure of wildlife species such as freshwater turtles. Changes to nesting sites and higher mortality rates due to vehicular collisions and increased predator populations may particularly affect immature turtles and mature female turtles. We hypothesized that the proportions of adult female and immature turtles in a population will negatively correlate with landscape urbanization. As a collaborative effort of the Ecological Research as Education Network (EREN), we sampled freshwater turtle populations in 11 states across the central and eastern United States. Contrary to expectations, we found a significant positive relationship between proportions of mature female painted turtles (Chrysemys picta) and urbanization. We did not detect a relationship between urbanization and proportions of immature turtles. Urbanization may alter the thermal environment of nesting sites such that more females are produced as urbanization increases. Our approach of creating a collaborative network of scientists and students at undergraduate institutions proved valuable in terms of testing our hypothesis over a large spatial scale while also allowing students to gain hands-on experience in conservation science.


Subject(s)
Turtles , Animals , Conservation of Natural Resources , Female , Fresh Water , United States , Urbanization
11.
Am J Bot ; 100(8): 1544-54, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23857735

ABSTRACT

PREMISE OF STUDY: Global increases in atmospheric CO2 and temperature may interact in complex ways to influence plant physiology and growth, particularly for species that grow in cool, early spring conditions in temperate forests. Plant species may also vary in their responses to environmental changes; fast-growing invasives may be more responsive to rising CO2 than natives and may increase production of allelopathic compounds under these conditions, altering species' competitive interactions. METHODS: We examined growth and physiological responses of Alliaria petiolata, an allelopathic, invasive herb, and Geum vernum, a co-occurring native herb, to ambient and elevated spring temperatures and atmospheric CO2 conditions in a factorial growth chamber experiment. KEY RESULTS: At 5 wk, leaves were larger at high temperature, and shoot biomass increased under elevated CO2 only at high temperature in both species. As temperatures gradually warmed to simulate seasonal progression, G. vernum became responsive to CO2 at both temperatures, whereas A. petiolata continued to respond to elevated CO2 only at high temperature. Elevated CO2 increased thickness and decreased nitrogen concentrations in leaves of both species. Alliaria petiolata showed photosynthetic downregulation at elevated CO2, whereas G. vernum photosynthesis increased at elevated temperature. Flavonoid and cyanide concentrations decreased significantly in A. petiolata leaves in the elevated CO2 and temperature treatment. Total glucosinolate concentrations and trypsin inhibitor activities did not vary among treatments. CONCLUSIONS: Future elevated spring temperatures and CO2 will interact to stimulate growth for A. petiolata and G. vernum, but there may be reduced allelochemical effects in A. petiolata.


Subject(s)
Brassicaceae/physiology , Carbon Dioxide/metabolism , Geum/physiology , Photosynthesis/physiology , Plant Immunity , Allelopathy , Atmosphere , Biomass , Brassicaceae/growth & development , Brassicaceae/immunology , Brassicaceae/radiation effects , Cyanides/metabolism , Flavonoids/metabolism , Geum/growth & development , Geum/immunology , Geum/radiation effects , Introduced Species , Light , Nitrogen/metabolism , Pheromones/metabolism , Plant Leaves/growth & development , Plant Leaves/immunology , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Roots/growth & development , Plant Roots/immunology , Plant Roots/physiology , Plant Roots/radiation effects , Plant Shoots/growth & development , Plant Shoots/immunology , Plant Shoots/physiology , Plant Shoots/radiation effects , Plant Transpiration/physiology , Seasons , Temperature
13.
Neurobiol Aging ; 30(11): 1792-804, 2009 Nov.
Article in English | MEDLINE | ID: mdl-18339452

ABSTRACT

Microglia clear amyloid beta (Abeta) after immunization. The interaction of Abeta with the microglial cell surface also results in cytokine expression. Soluble oligomers and protofibrils of Abeta may be more neurotoxic than Abeta fibrils. We investigated the effects of oligomeric, protofibrillar and fibrillar Abeta40 and Abeta42 peptides on uptake and IL-1alpha expression by primary microglia. Abeta peptide assemblies were extensively characterized. Primary microglial cells were exposed to different Abeta40 and Abeta42 assemblies and IL-1alpha expression was quantified. To study uptake, microglial cells were exposed to different assemblies of Cy3-labeled Abeta. We found that Abeta42 and Abeta40 oligomers and fibrils induced IL-1alpha expression, but protofibrils did not. We also observed that all forms of Abeta42 (oligomer, protofibril and fibril) and Abeta40 fibrils were taken up by the microglial cells. These results demonstrate that microglial cells can take up non-fibrillar Abeta and that oligomeric peptide induces an inflammatory response. The uptake of oligomeric and protofibrillar Abeta by microglia merits further investigation as a potential means for removing these neurotoxic species from the brain.


Subject(s)
Amyloid beta-Peptides/metabolism , Gene Expression Regulation/physiology , Interleukin-1alpha/metabolism , Microglia/metabolism , Peptide Fragments/metabolism , Amyloid beta-Peptides/pharmacology , Analysis of Variance , Animals , Animals, Newborn , Benzothiazoles , Cells, Cultured , Cerebral Cortex/cytology , Cytokines/metabolism , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , L-Lactate Dehydrogenase/metabolism , Magnetic Resonance Imaging/methods , Mice , Microglia/drug effects , Microglia/ultrastructure , Microscopy, Electron, Transmission/methods , Neuroblastoma , Peptide Fragments/pharmacology , Protein Conformation , Thiazoles/metabolism
14.
Funct Plant Biol ; 36(7): 621-628, 2009 Jul.
Article in English | MEDLINE | ID: mdl-32688675

ABSTRACT

We only have a limited understanding of the nutrient uptake physiology of individual roots as they age. Despite this shortcoming, the importance of nutrient uptake processes to our understanding of plant nutrition and nutrient cycling cannot be underestimated. In this study, we used a 15N depletion method that allowed for the measurement of nitrate-N uptake rates on intact, individual, fine roots of known age. We expected that N uptake would decline rapidly as fine roots aged, regardless of the environmental conditions and species used. We compared age dependent uptake patterns of young grape cuttings with those of mature vines and with those of tomato. Although patterns of declining uptake with increasing root age were similar for all species and conditions tested, large differences in maximum N uptake rates existed between young cuttings and mature vines, and between woody and herbaceous species. Maximum rates were 10-fold higher for tomato and 3-fold higher for the grape cuttings, when compared with uptake rates of fine roots of mature vines. Coefficients of variation ranged from 43 to 122% within root age groups. The large variability in physiological characteristics of fine roots of the same age, diameter and order suggests that there is a functional diversity within fine roots that is still poorly understood.

15.
Int J Food Microbiol ; 119(1-2): 25-32, 2007 Oct 20.
Article in English | MEDLINE | ID: mdl-17854936

ABSTRACT

Genetic variation occurs at all levels across the genus Fusarium. In some cases such variation has been used to define species, and in others to describe populations or lineages. When amplified fragment length polymorphisms (AFLPs) are evaluated, strains in different species usually share at least 60% of the fragments and those in different species 40% of the fragments, or less, with isolates sharing between 40 and 60% of the fragments in an indeterminant situation. This gray area also is reflected in morphological characters, usually indistinguishable, and cross-fertility, usually some cross-fertility but often not as fertile as are strains that are more closely related. In terms of DNA sequence, the genes used for species diagnostics often have not been tested on large numbers of strains. For example, the TRI101 gene of F. graminearum contains at least 25 single nucleotide polymorphisms (SNPs) from 36 strains and yielded 17 alleles that have been proposed as a means to subdivide this species into at least nine. However these subdivisions fare poorly as more strains are analyzed, with the number of alleles increasing to >40 when approximately 500 strains from Korea and South America are sequenced. Some of the newly identified alleles cannot be correctly assigned to one of the nine subdivisions based on the proposed diagnostic SNPs. Before SNPs are proposed as characters to define species, it is important to verify their specificity based on a sufficiently large sample and to evaluate the genetic variation present in terms of an independent measure of genetic relationships. Only in such a manner can names that are meaningful in the context of trade and quarantine regulations be developed.


Subject(s)
DNA, Fungal/chemistry , DNA, Fungal/genetics , Fusarium/genetics , Genetic Variation , Polymorphism, Genetic , Alleles , Fusarium/classification , Gibberella/classification , Gibberella/genetics , Phylogeny , Polymorphism, Restriction Fragment Length , Polymorphism, Single Nucleotide , Species Specificity
16.
Ecology ; 87(1): 41-52, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16634295

ABSTRACT

The interaction between nitrogen cycling and carbon sequestration is critical in predicting the consequences of anthropogenic increases in atmospheric CO2 (hereafter, Ca). The progressive N limitation (PNL) theory predicts that carbon sequestration in plants and soils with rising Ca may be constrained by the availability of nitrogen in many ecosystems. Here we report on the interaction between C and N dynamics during a four-year field experiment in which an intact C3/C4 grassland was exposed to a gradient in Ca from 200 to 560 micromol/mol. There were strong species effects on decomposition dynamics, with C loss positively correlated and N mineralization negatively correlated with Ca for litter of the C3 forb Solanum dimidiatum, whereas decomposition of litter from the C4 grass Bothriochloa ischaemum was unresponsive to Ca. Both soil microbial biomass and soil respiration rates exhibited a nonlinear response to Ca, reaching a maximum at approximately 440 micromol/mol Ca. We found a general movement of N out of soil organic matter and into aboveground plant biomass with increased Ca. Within soils we found evidence of C loss from recalcitrant soil C fractions with narrow C:N ratios to more labile soil fractions with broader C:N ratios, potentially due to decreases in N availability. The observed reallocation of N from soil to plants over the last three years of the experiment supports the PNL theory that reductions in N availability with rising Ca could initially be overcome by a transfer of N from low C:N ratio fractions to those with higher C:N ratios. Although the transfer of N allowed plant production to increase with increasing Ca, there was no net soil C sequestration at elevated Ca, presumably because relatively stable C is being decomposed to meet microbial and plant N requirements. Ultimately, if the C gained by increased plant production is rapidly lost through decomposition, the shift in N from older soil organic matter to rapidly decomposing plant tissue may limit net C sequestration with increased plant production.


Subject(s)
Carbon Dioxide/physiology , Carbon/metabolism , Ecosystem , Nitrogen/metabolism , Poaceae/metabolism , Soil , Biomass , Carbon/analysis , Carbon Dioxide/chemistry , Nitrogen/chemistry , Poaceae/chemistry , Soil/analysis , Soil Microbiology , Solanum/chemistry , Solanum/metabolism , Time Factors
17.
New Phytol ; 160(3): 533-544, 2003 Dec.
Article in English | MEDLINE | ID: mdl-33873660

ABSTRACT

• A wide variety of transparent materials are currently used for minirhizotron tubes. We tested the null hypothesis that minirhizotron composition does not influence root morphology and dynamics. • Minirhizotron data were compared for glass, acrylic and butyrate tubes in apple (Malus domestica) and acrylic and butyrate tubes in a study with six forest tree species. • Root phenology and morphology were generally similar among tubes. Apple root production was greatest against glass; these roots became pigmented later and lived longer than roots near acrylic or butyrate. Roots generally became pigmented faster next to butyrate than next to acrylic. Root survivorship was shorter near butyrate tubes in three of the four hardwood species; however, survivorship was shorter near acrylic tubes for the three conifer species. Comparison of minirhizotron standing crop data with root standing crop from cores showed that the acrylic data matched more closely than the butyrate data. • This study reveals that the transparent material used often has little effect on root production but can substantially influence root survivorship in some plants.

18.
Nature ; 417(6886): 279-82, 2002 May 16.
Article in English | MEDLINE | ID: mdl-12015601

ABSTRACT

Carbon sequestration in soil organic matter may moderate increases in atmospheric CO(2) concentrations (C(a)) as C(a) increases to more than 500 micromol mol(-1) this century from interglacial levels of less than 200 micromol mol(-1) (refs 1 6). However, such carbon storage depends on feedbacks between plant responses to C(a) and nutrient availability. Here we present evidence that soil carbon storage and nitrogen cycling in a grassland ecosystem are much more responsive to increases in past C(a) than to those forecast for the coming century. Along a continuous gradient of 200 to 550 micromol mol(-1) (refs 9, 10), increased C(a) promoted higher photosynthetic rates and altered plant tissue chemistry. Soil carbon was lost at subambient C(a), but was unchanged at elevated C(a) where losses of old soil carbon offset increases in new carbon. Along the experimental gradient in C(a) there was a nonlinear, threefold decrease in nitrogen availability. The differences in sensitivity of carbon storage to historical and future C(a) and increased nutrient limitation suggest that the passive sequestration of carbon in soils may have been important historically, but the ability of soils to continue as sinks is limited.


Subject(s)
Atmosphere/chemistry , Carbon Dioxide/metabolism , Poaceae/physiology , Soil/analysis , Biomass , Carbon/metabolism , Ecosystem , Nitrogen/metabolism , Oxygen/metabolism , Photosynthesis
19.
Tree Physiol ; 20(17): 1199-1203, 2000 Nov.
Article in English | MEDLINE | ID: mdl-12651496

ABSTRACT

Many plants emit isoprene, a hydrocarbon that has important influences on atmospheric chemistry. Pathogens may affect isoprene fluxes, both through damage to plant tissue and by changing the abundance of isoprene-emitting species. Live oaks (Quercus fusiformis (Small) Sarg. and Q. virginiana Mill) are major emitters of isoprene in the southern United States, and oak populations in Texas are being dramatically reduced by oak wilt, a widespread fungal vascular disease. We investigated the effects of oak wilt on isoprene emissions from live oak leaves (Q. fusiformis) in the field, as a first step in exploring the physiological effects of oak wilt on isoprene production and the implications of these effects for larger-scale isoprene fluxes. Isoprene emission rates per unit dry leaf mass were 44% lower for actively symptomatic leaves than for leaves on healthy trees (P = 0.033). Isoprene fluxes were significantly negatively correlated with rankings of disease activity in the host tree (fluxes in leaves on healthy trees > healthy leaves on survivor trees > healthy leaves on the same branch as symptomatic leaves > symptomatic leaves; isoprene per unit dry mass: Spearman's rho = -0.781, P = 0.001; isoprene per unit leaf area: Spearman's rho = -0.652, P = 0.008). Photosynthesis and stomatal conductance were reduced by 57 and 63%, respectively, in symptomatic relative to healthy leaves (P < 0.05); these reductions were proportionally greater than the reductions in isoprene emissions. Low isoprene emission rates in symptomatic leaves are most simply explained by physiological constraints on isoprene production, such as water stress as a result of xylem blockage, rather than direct effects of the oak wilt fungus on isoprene synthesis. The effects of oak wilt on leaf-level isoprene emission rates are probably less important for regional isoprene fluxes than the reduction in oak leaf area across landscapes.

SELECTION OF CITATIONS
SEARCH DETAIL
...