Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
JCI Insight ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869953

ABSTRACT

Duodenal bicarbonate secretion is critical to epithelial protection, nutrient digestion/absorption and is impaired in cystic fibrosis (CF). We examined if linaclotide, typically used to treat constipation, may also stimulate duodenal bicarbonate secretion. Bicarbonate secretion was measured in vivo and in vitro using mouse and human duodenum (biopsies and enteroids). Ion transporter localization was identified with confocal microscopy and de novo analysis of human duodenal single cell RNA sequencing (sc-RNAseq) datasets was performed. Linaclotide increased bicarbonate secretion in mouse and human duodenum in the absence of CFTR expression (Cftr knockout mice) or function (CFTRinh-172). NHE3 inhibition contributed to a portion of this response. Linaclotide-stimulated bicarbonate secretion was eliminated by down-regulated in adenoma (DRA, SLC26A3) inhibition during loss of CFTR activity. Sc-RNAseq identified that 70% of villus cells expressed SLC26A3, but not CFTR, mRNA. Loss of CFTR activity and linaclotide increased apical brush border expression of DRA in non-CF and CF differentiated enteroids. These data provide further insights into the action of linaclotide and how DRA may compensate for loss of CFTR in regulating luminal pH. Linaclotide may be a useful therapy for CF individuals with impaired bicarbonate secretion.

2.
RSC Med Chem ; 15(5): 1731-1736, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38784456

ABSTRACT

SLC26A3, also known as downregulated in adenoma (DRA), is an anion (Cl-, HCO3- and oxalate) exchanger in the luminal membrane of intestinal epithelial cells. Loss of DRA function in mice and humans causes congenital chloride-losing diarrhea and reduces urinary excretion of oxalate, a major constituent of kidney stones. Thus, inhibition of DRA is a potential treatment approach for constipation and calcium oxalate kidney stones. High-throughput screening previously identified 4,8-dimethylcoumarins (4a-4c) as DRA inhibitors, with lead candidate 4b having an IC50 of 40-50 nM for DRA inhibition. Here, we explored the effects of varying substituents at the 8-position, and replacing 8-methyl by 5-methyl (4e-4h). A focused library of 17 substituted compounds (4d-4t) was synthesized with good yield and purity. Compounds were tested for DRA inhibition potency using Fischer rat thyroid cells stably expressing DRA and a halide-sensitive YFP. Structure-activity analysis revealed that 8-bromo- (4m-4p) and 8-fluoro-coumarins (4q-4t) were slightly less potent than the corresponding 8-chloro analogs, demonstrating that the size of methyl or chloro substituents at the coumarin 8 position affects the potency. An analog containing 8-chlorocoumarin (4k) had ∼2-fold improved potency (IC50 25 nM) compared with the original lead candidate 4b. 5,8-Dimethylcoumarins were active against DRA, but with much lower potency than 4,8-disubstituted coumarins. In mice, orally administered 4k at 10 mg kg-1 reduced constipation and normalized stool water content in a loperamide-induced constipation model with comparable efficacy to 4b. Pharmacokinetic analysis of orally administered 4k at 10 mg kg-1 in mice indicated serum levels of >10 µM for at least six hours after single dose. This study expands SAR knowledge of 4,8-disubstituted coumarin inhibitors of DRA as novel drug candidates for constipation and kidney stones.

4.
RSC Med Chem ; 14(11): 2342-2347, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37974969

ABSTRACT

A loss of prosecretory Cl- channel CFTR activity in the intestine is considered as the key cause of gastrointestinal problems in cystic fibrosis (CF): meconium ileus, distal intestinal obstruction syndrome (DIOS) and constipation. Since CFTR modulators have minimal effects on gastrointestinal symptoms, there is an unmet need for novel treatments for CF-associated gastrointestinal disorders. Meconium ileus and DIOS mainly affect the ileum (distal small intestine). SLC26A6 (putative anion transporter 1, PAT1) is a Cl-/HCO3- exchanger at the luminal membrane of small intestinal epithelial cells which facilitates Cl- and fluid absorption. We recently identified first-in-class PAT1 inhibitors by high-throughput screening. Isoxazolopyrimidine PAT1inh-A01 was a hit compound, which had low potency (IC50 5.2 µM) for SLC26A6 inhibition precluding further preclinical development. Here we performed structure-activity relationship studies to optimize isoxazolopyrimidine SLC26A6 inhibitors and tested a potent inhibitor in mouse models of intestinal fluid absorption. Structure-activity studies of 377 isoxazolopyrimidine analogs identified PAT1inh-A0030 (ethyl 4-(benzyl(methyl)amino)-3-methylisoxazolo[5,4-d]pyrimidine-6-carboxylate) as the most potent SLC26A6 inhibitor with a 1.0 µM IC50. Selectivity studies showed that PAT1inh-A030 has no activity on relevant ion transporters/channels (SLC26A3, SLC26A4, SLC26A9, CFTR, TMEM16A). In a closed-loop model of intestinal fluid absorption, intraluminal PAT1inh-A0030 treatment inhibited fluid absorption in the ileum of wild-type and CF mice (CftrdelF508/delF508) with >90% prevention of a decrease in loop fluid volume and loop weight/length ratio at 30 minutes. These results suggest that SLC26A6 is the key transporter mediating Cl- and fluid absorption in the ileum and SLC26A6 inhibitors are novel drug candidates for treatment of CF-associated small intestinal disorders.

5.
Pediatr Res ; 94(3): 1035-1043, 2023 09.
Article in English | MEDLINE | ID: mdl-36899125

ABSTRACT

BACKGROUND: The immunogenicity and safety of a booster dose of tetanus toxoid-conjugate quadrivalent meningococcal vaccine (MenACYW-TT), alone or co-administered with MenB vaccine, were assessed in healthy 13-25-year olds who received MenACYW-TT or a CRM-conjugate vaccine (MCV4-CRM) 3-6 years earlier. METHODS: This phase IIIb open-label trial (NCT04084769) evaluated MenACYW-TT-primed participants, randomized to receive MenACYW-TT alone or with a MenB vaccine, and MCV4-CRM-primed participants who received MenACYW-TT alone. Functional antibodies against serogroups A, C, W and Y were measured using human complement serum bactericidal antibody assay (hSBA). The primary endpoint was vaccine seroresponse (post-vaccination titers ≥1:16 if pre-vaccination titers <1:8; or a ≥4-fold increase if pre-vaccination titers ≥1:8) 30 days post booster. Safety was evaluated throughout the study. RESULTS: The persistence of the immune response following primary vaccination with MenACYW-TT was demonstrated. Seroresponse after MenACYW-TT booster was high regardless of priming vaccine (serogroup A: 94.8% vs 93.2%; C: 97.1% vs 98.9%; W: 97.7% vs 98.9%; and Y; 98.9% vs 100% for MenACWY-TT-primed and MCV4-CRM-primed groups, respectively). Co-administration with MenB vaccines did not affect MenACWY-TT immunogenicity. No vaccine-related serious adverse events were reported. CONCLUSIONS: MenACYW-TT booster induced robust immunogenicity against all serogroups, regardless of the primary vaccine received, and had an acceptable safety profile. IMPACT: A booster dose of MenACYW-TT induces robust immune responses in children and adolescents primed with MenACYW-TT or another MCV4 (MCV4-DT or MCV4-CRM), respectively. Here, we demonstrate that MenACYW-TT booster 3-6 years after primary vaccination induced robust immunogenicity against all serogroups, regardless of the priming vaccine (MenACWY-TT or MCV4-CRM), and was well tolerated. Persistence of the immune response following previous primary vaccination with MenACYW-TT was demonstrated. MenACYW-TT booster with MenB vaccine co-administration did not affect MenACWY-TT immunogenicity and was well tolerated. These findings will facilitate the provision of broader protection against IMD particularly in higher-risk groups such as adolescents.


Subject(s)
Meningococcal Vaccines , Neisseria meningitidis , Child , Humans , Adult , Adolescent , Tetanus Toxoid , Antibodies, Bacterial , Vaccination , Meningococcal Vaccines/adverse effects , Vaccines, Conjugate
6.
Eur J Med Chem ; 249: 115149, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36724632

ABSTRACT

The anion exchanger protein SLC26A3 (down-regulated in adenoma, DRA) is expressed in the luminal membrane of intestinal epithelial cells in colon, where it facilitates the absorption of Cl- and oxalate. We previously identified a 4,8-dimethylcoumarin class of SLC26A3 inhibitors that act from the SLC26A3 cytoplasmic surface, and demonstrated their efficacy in mouse models of constipation and hyperoxaluria. Here, screening of 50,000 new compounds and 1740 chemical analogs of active compounds from the primary screen produced five novel classes of SLC26A3-selective inhibitors (1,3-dioxoisoindoline-amides; N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)acetamides; thiazolo-pyrimidin-5-ones; 3-carboxy-2-phenylbenzofurans and benzoxazin-4-ones) with IC50 down to 100 nM. Kinetic washout and onset of action studies revealed an extracellular site of action for the thiazolo-pyrimidin-5-one and 3-carboxy-2-phenylbenzofuran inhibitors. Molecular docking computations revealed putative binding sites for these inhibitors. In a loperamide model of constipation in mice, orally administered 7-(2-chloro-phenoxymethyl)-3-phenyl-thiazolo [3,2-a]pyrimidin-5-one (3a) significantly increased stool weight, pellet number and water content. SLC26A3 inhibitors with an extracellular site of action offer the possibility of creating non-absorbable, luminally acting inhibitors with minimal systemic exposure following oral administration. Our findings also suggest that inhibitors of related SLC26 anion transporters with an extracellular site of action might be identified for pharmacological modulation of selected epithelial ion transport processes.


Subject(s)
Antiporters , Constipation , Mice , Animals , Antiporters/chemistry , Antiporters/metabolism , Antiporters/pharmacology , Molecular Docking Simulation , Biological Transport , Anions , Chlorides/metabolism , Sulfate Transporters/metabolism
7.
Emotion ; 23(2): 332-344, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35446055

ABSTRACT

Affect is involved in many psychological phenomena, but a descriptive structure, long sought, has been elusive. Valence and arousal are fundamental, and a key question-the focus of the present study-is the relationship between them. Valence is sometimes thought to be independent of arousal, but, in some studies (representing too few societies in the world) arousal was found to vary with valence. One common finding is that arousal is lowest at neutral valence and increases with both positive and negative valence: a symmetric V-shaped relationship. In the study reported here of self-reported affect during a remembered moment (N = 8,590), we tested the valence-arousal relationship in 33 societies with 25 different languages. The two most common hypotheses in the literature-independence and a symmetric V-shaped relationship-were not supported. With data of all samples pooled, arousal increased with positive but not negative valence. Valence accounted for between 5% (Finland) and 43% (China Beijing) of the variance in arousal. Although there is evidence for a structural relationship between the two, there is also a large amount of variability in this relation. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Emotions , Language , Humans , Self Report , Surveys and Questionnaires , Arousal
8.
Viruses ; 16(1)2023 12 29.
Article in English | MEDLINE | ID: mdl-38257761

ABSTRACT

BACKGROUND AND OBJECTIVES: Timely detection of SARS-CoV-2 infection with subsequent contact tracing and rapid isolation are considered critical to containing the pandemic, which continues with the emergence of new variants. Hence, there is an ongoing need for reliable point-of-care antigen rapid diagnostic tests (Ag-RDT). This report describes the development, evaluation, and analytical sensitivity of the diagnostic performance of the InteliSwab® COVID-19 Rapid Test. Methods: Samples from 165 symptomatic subjects were tested with InteliSwab® and the results were compared to RT-PCR to determine the antigen test performance. The analytical sensitivity of InteliSwab® for the detection of different variants was assessed by limit of detection (LOD) determination using recombinant nucleocapsid proteins (NPs) and testing with virus isolates. Western immunoblot independently confirmed that each monoclonal Ab is capable of binding to all variants tested thus far. RESULTS: The overall positivity rate by RT-PCR was 37% for the 165 symptomatic subjects. Based on RT-PCR results as the reference standard, InteliSwab® showed clinical sensitivity and specificity of 85.2% (95% CI, 74.3-92.0%) and 98.1% (95% CI, 93.3-99.7%), respectively. The overall agreement was 93.3% (Kappa index value 0.85; 95% CI, 0.77-0.74) between RT-PCR and InteliSwab® test results. Furthermore, the evaluation of analytical sensitivity for different SARS-CoV-2 variants by InteliSwab® was comparable in the detection of all the variants tested, including Omicron subvariants, BA.4, BA.5, and BQ.1. CONCLUSIONS: Due to the surge of infections caused by different variants from time to time, there is a critical need to evaluate the sensitivity of rapid antigen-detecting tests for new variants. The study findings showed the robust diagnostic performance of InteliSwab® and analytical sensitivity in detecting different SARS-CoV-2 variants, including the Omicron subvariants. With the integrated swab and excellent sensitivity and variant detection, this test has high potential as a point-of-care Ag-RDT in various settings when molecular assays are in limited supply and rapid diagnosis of SARS-CoV-2 is necessary.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Biological Assay , Blotting, Western , COVID-19 Testing
9.
J Chem Phys ; 157(8): 081101, 2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36049998

ABSTRACT

Plasmon-mediated electrocatalysis based on plasmonic gold nanoparticles (Au NPs) has emerged as a promising approach to facilitate electrochemical reactions with the introduction of light to excite the plasmonic electrodes. We have investigated the electrochemical oxidation of 4-(hydroxymethyl)benzoic acid (4-HMBA) on gold (Au), nickel (Ni), and platinum (Pt) metal working electrodes in alkaline electrolytes. Au has the lowest onset potential for catalyzing the electrooxidation of 4-HMBA among the three metals in base, whereas Pt does not catalyze the electrooxidation of 4-HMBA under alkaline conditions, although it is conventionally a good electrocatalyst for alcohol oxidation. Both 4-carboxybenzaldehyde and terephthalic acid are detected as the products of electrochemical oxidation of 4-HMBA on the Au working electrode by high-performance liquid chromatography . The electrodeposited Au NPs on indium tin oxide (ITO)-coated glass is further utilized as the working electrode for the 4-HMBA electrooxidation. With its broad absorption in the visible and near-infrared range, we show that the Au NPs on the ITO electrode could enhance the electrochemical oxidation of 4-HMBA under green and red LED light illuminations (505 and 625 nm). A possible reaction mechanism is proposed for the electrochemical oxidation of 4-HMBA on Au working electrodes in an alkaline electrolyte.


Subject(s)
Gold , Metal Nanoparticles , Benzoic Acid , Electrochemistry/methods , Electrodes , Gold/chemistry , Metal Nanoparticles/chemistry
10.
Open Biol ; 11(6): 200400, 2021 06.
Article in English | MEDLINE | ID: mdl-34186010

ABSTRACT

Wnt gradients elicit distinct cellular responses, such as proliferation, specification, differentiation and survival in a dose-dependent manner. Porcupine (PORCN), a membrane-bound O-acyl transferase (MBOAT) that resides in the endoplasmic reticulum, catalyses the addition of monounsaturated palmitate to Wnt proteins and is required for Wnt gradient formation and signalling. In humans, PORCN mutations are causal for focal dermal hypoplasia (FDH), an X-linked dominant syndrome characterized by defects in mesodermal and endodermal tissues. PORCN is also an emerging target for cancer therapeutics. Despite the importance of this enzyme, its structure remains poorly understood. Recently, the crystal structure of DltB, an MBOAT family member from bacteria, was solved. In this report, we use experimental data along with homology modelling to DltB to determine the membrane topology of PORCN. Our studies reveal that PORCN has 11 membrane domains, comprising nine transmembrane spanning domains and two reentrant domains. The N-terminus is oriented towards the lumen while the C-terminus is oriented towards the cytosol. Like DltB, PORCN has a funnel-like structure that is encapsulated by multiple membrane-spanning helices. This new model for PORCN topology allows us to map residues that are important for biological activity (and implicated in FDH) onto its three-dimensional structure.


Subject(s)
Acyltransferases/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Membrane Proteins/metabolism , Wnt Signaling Pathway , Acyltransferases/chemistry , Algorithms , Animals , Cell Line , Computational Biology/methods , Consensus Sequence , Fluorescent Antibody Technique , Glycosylation , Humans , Membrane Proteins/chemistry , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Structure-Activity Relationship
11.
Kidney Int ; 100(2): 311-320, 2021 08.
Article in English | MEDLINE | ID: mdl-33836171

ABSTRACT

Hypertension is a major cause of cardiovascular morbidity and mortality, despite the availability of antihypertensive drugs with different targets and mechanisms of action. Here, we provide evidence that pharmacological inhibition of TMEM16A (ANO1), a calcium-activated chloride channel expressed in vascular smooth muscle cells, blocks calcium-activated chloride currents and contraction in vascular smooth muscle in vitro and decreases blood pressure in spontaneously hypertensive rats. The acylaminocycloalkylthiophene TMinh-23 fully inhibited calcium-activated TMEM16A chloride current with nanomolar potency in Fischer rat thyroid cells expressing TMEM16A, and in primary cultures of rat vascular smooth muscle cells. TMinh-23 reduced vasoconstriction caused by the thromboxane mimetic U46619 in mesenteric resistance arteries of wild-type and spontaneously hypertensive rats, with a greater inhibition in spontaneously hypertensive rats. Blood pressure measurements by tail-cuff and telemetry showed up to a 45-mmHg reduction in systolic blood pressure lasting for four-six hours in spontaneously hypertensive rats after a single dose of TMinh-23. A minimal effect on blood pressure was seen in wild-type rats or mice treated with TMinh-23. Five-day twice daily treatment of spontaneously hypertensive rats with TMinh-23 produced sustained reductions of 20-25 mmHg in daily mean systolic and diastolic blood pressure. TMinh-23 action was reversible, with blood pressure returning to baseline in spontaneously hypertensive rats by three days after treatment discontinuation. Thus, our studies provide validation for TMEM16A as a target for antihypertensive therapy and demonstrate the efficacy of TMinh-23 as an antihypertensive with a novel mechanism of action.


Subject(s)
Anoctamin-1/antagonists & inhibitors , Hypertension , Muscle, Smooth, Vascular , Vasoconstriction , Animals , Blood Pressure/drug effects , Chloride Channels , Hypertension/drug therapy , Muscle Contraction/drug effects , Rats , Rats, Inbred SHR
14.
Bioorg Med Chem Lett ; 32: 127683, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33227414

ABSTRACT

The protozoan parasite Plasmodium falciparum causes the most severe form of human malaria and is estimated to kill 400,000 people a year. The parasite infects and replicates in host red blood cells (RBCs), where it expresses an array of proteases to carry out multiple essential processes. We are investigating the function of falcilysin (FLN), a protease known to be required for parasite development in the RBC. We previously developed a piperazine-based hydroxamic acid scaffold to generate the first inhibitors of FLN, and the current study reports the optimization of the lead compound from that series. A range of substituents were tested at the N1 and N4 positions of the piperazine core, and inhibitors with significantly improved potency against purified FLN and cultured P. falciparum were identified. Computational studies were also performed to understand the mode of binding for these compounds, and predicted a binding model consistent with the biochemical data and the distinctive SAR observed at both the N1 and N4 positions.


Subject(s)
Antimalarials/chemistry , Hydroxamic Acids/chemistry , Metalloendopeptidases/antagonists & inhibitors , Piperazine/chemistry , Protozoan Proteins/antagonists & inhibitors , Antimalarials/metabolism , Antimalarials/pharmacology , Binding Sites , Hydroxamic Acids/metabolism , Hydroxamic Acids/pharmacology , Metalloendopeptidases/metabolism , Molecular Docking Simulation , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Structure-Activity Relationship
15.
J Med Chem ; 63(20): 11902-11919, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32945666

ABSTRACT

Malaria remains one of the most deadly infectious diseases, causing hundreds of thousands of deaths each year, primarily in young children and pregnant mothers. Here, we report the discovery and derivatization of a series of pyrazolo[3,4-b]pyridines targeting Plasmodium falciparum, the deadliest species of the malaria parasite. Hit compounds in this series display sub-micromolar in vitro activity against the intraerythrocytic stage of the parasite as well as little to no toxicity against the human fibroblast BJ and liver HepG2 cell lines. In addition, our hit compounds show good activity against the liver stage of the parasite but little activity against the gametocyte stage. Parasitological profiles, including rate of killing, docking, and molecular dynamics studies, suggest that our compounds may target the Qo binding site of cytochrome bc1.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Pyrazoles/pharmacology , Pyridines/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Cell Line , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Models, Molecular , Molecular Structure , Parasitic Sensitivity Tests , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship
16.
FASEB J ; 33(10): 11247-11257, 2019 10.
Article in English | MEDLINE | ID: mdl-31299174

ABSTRACT

Interstitial cells of Cajal, which express the calcium-activated chloride channel transmembrane member 16A (TMEM16A), are an important determinant of gastrointestinal (GI) motility. We previously identified the acylaminocycloalkylthiophene class of TMEM16A inhibitors, which, following medicinal chemistry, gave analog 2-bromodifluoroacetylamino-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carboxylic acid o-tolylamide (TMinh-23) with 30 nM half-maximal inhibitory concentration. Here, we tested the efficacy of TMinh-23 for inhibition of GI motility in mice. In isolated murine gastric antrum, TMinh-23 strongly inhibited spontaneous and carbachol-stimulated rhythmic contractions. Pharmacokinetic analysis showed predicted therapeutic concentrations of TMinh-23 for at least 4 h following a single oral or intraperitoneal dose at 10 mg/kg. Gastric emptying, as assessed following an oral bolus of phenol red or independently by [99mTc]-diethylenetriamine pentaacetic acid scintigraphy, was reduced by TMinh-23 by ∼60% at 20 min. Interestingly, there was little effect of TMinh-23 on baseline whole-gut transit time or time to diarrhea induced by castor oil. Consequent to the delay in gastric emptying, TMinh-23 administration significantly reduced the elevation in blood sugar in mice following an oral but not intraperitoneal glucose load. These results provide pharmacological evidence for involvement of TMEM16A in gastric emptying and suggest the utility of TMEM16A inhibition in disorders of accelerated gastric emptying, such as dumping syndrome, and potentially for improving glucose tolerance in diabetes mellitus/metabolic syndrome and enhancing satiety in obesity.-Cil, O., Anderson, M. O., Yen, R., Kelleher, B., Huynh, T. L., Seo, Y., Nilsen, S. P., Turner, J. R., Verkman, A. S. Slowed gastric emptying and improved oral glucose tolerance produced by a nanomolar-potency inhibitor of calcium-activated chloride channel TMEM16A.


Subject(s)
Anoctamin-1/metabolism , Calcium/metabolism , Chloride Channel Agonists/pharmacology , Chloride Channels/metabolism , Gastric Emptying/drug effects , Glucose/metabolism , Neoplasm Proteins/metabolism , Animals , Blood Glucose/drug effects , Chlorides/metabolism , Female , Gastrointestinal Motility/drug effects , Glucose Tolerance Test/methods , Humans , Mice
17.
J Mol Model ; 25(7): 194, 2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31209577

ABSTRACT

The Zika virus has recently become a subject of acute interest after the discovery of the link between viral infection and microcephaly in infants. Though a number of treatments are under active investigation, there are currently no approved treatments for the disease. To address this critical need, we screened more than 7 million compounds targeting the NS2B-NS3 protease in an attempt to identify promising inhibitor candidates. Starting with commercially and freely available compounds, we identified six hits utilizing an exhaustive consensus screening protocol, followed by molecular dynamics simulation and binding energy estimation using MM/GBSA and MM/PBSA methods. These compounds feature a variety of cores and functionalities, and all are predicted to have good pharmacokinetic profiles, making them promising candidates for screening assays. Graphical abstract Virtual screen of potential Zika virus NS2B-NS3 protease inhibitors.


Subject(s)
Antiviral Agents/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases/chemistry , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/chemistry , Zika Virus/metabolism , Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , Humans , Molecular Conformation , Molecular Structure , Protease Inhibitors/pharmacology , Protein Binding , Viral Nonstructural Proteins/antagonists & inhibitors , Zika Virus/drug effects
18.
Physiol Behav ; 189: 64-73, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29526572

ABSTRACT

Sleep apnea is a common sleep disorder characterized by intermittent periods of low blood oxygen levels. The risk for sleep apnea increases with age and is more prevalent in men than women. A common comorbidity of sleep apnea includes male sexual dysfunction, but it is not clear if a causal relationship exists between sleep apnea and sexual dysfunction. Possible mechanisms that link these two disorders include oxidative stress and testosterone. Oxidative stress is elevated in clinical patients with sleep apnea and in rodents exposed to chronic intermittent hypoxia (CIH), an animal model for apnea-induced hypopnea. Further, oxidative stress levels increase with age. Therefore, age may play a role in sleep apnea-induced sexual dysfunction and oxidative stress generation. To investigate this relationship, we exposed gonadally intact 3 (young) and 12 (middle-aged) month old male F344/BN F1 hybrid male rats to 8 days of CIH, and then examined male sexual function. Plasma was used to assess circulating oxidative stress and hormone levels. Middle-aged male rats had lower testosterone levels with increased sexual dysfunction and oxidative stress, independent of CIH. However, CIH decreased testosterone levels and increased sexual dysfunction and oxidative stress only in young gonadally intact male rats, but not in gonadectomized young rats with physiological testosterone replacement. In sum, CIH had a greater impact on younger gonadally intact animals, with respect to sexual behaviors, testosterone, and oxidative stress. Our data indicate CIH mimics the effects of aging on male sexual behavior in young gonadally intact male rats.


Subject(s)
Aging/physiology , Corticosterone/blood , Hypoxia/physiopathology , Oxidative Stress/physiology , Sexual Behavior/physiology , Sleep Apnea Syndromes/physiopathology , Testosterone/blood , Animals , Follicle Stimulating Hormone/blood , Hypoxia/blood , Hypoxia/complications , Luteinizing Hormone/blood , Male , Orchiectomy , Oxytocin/blood , Rats , Sleep Apnea Syndromes/complications
19.
J Med Chem ; 61(7): 3209-3217, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29589443

ABSTRACT

Urea transporter A (UT-A) isoforms encoded by the Slc14a2 gene are expressed in kidney tubule epithelial cells, where they facilitate urinary concentration. UT-A1 inhibition is predicted to produce a unique salt-sparing diuretic action in edema and hyponatremia. Here we report the discovery of 1,2,4-triazoloquinoxalines and the analysis of 37 synthesized analogues. The most potent compound, 8ay, containing 1,2,4-triazolo[4,3- a]quinoxaline-substituted benzenesulfonamide linked by an aryl ether, rapidly and reversibly inhibited UT-A1 urea transport by a noncompetitive mechanism with IC50 ≈ 150 nM; the IC50 was ∼2 µM for the related urea transporter UT-B encoded by the Slc14a1 gene. Molecular modeling suggested a putative binding site on the UT-A1 cytoplasmic domain. In vitro metabolism showing quinoxaline ring oxidation prompted the synthesis of metabolically stable 7,8-difluoroquinoxaline analogue 8bl, which when administered to rats produced marked diuresis and reduced urinary osmolality. 8bl has substantially improved UT-A1 inhibition potency and metabolic stability compared with prior compounds.


Subject(s)
Kidney/metabolism , Membrane Transport Proteins/drug effects , Quinoxalines/chemical synthesis , Quinoxalines/pharmacology , Animals , Diuresis/drug effects , Diuretics/chemical synthesis , Diuretics/pharmacology , Dogs , Humans , Kidney/drug effects , Madin Darby Canine Kidney Cells , Male , Models, Molecular , Molecular Conformation , Molecular Docking Simulation , Osmolar Concentration , Quinoxalines/pharmacokinetics , Rats , Rats, Wistar , Structure-Activity Relationship , Urea/metabolism , Urea Transporters
SELECTION OF CITATIONS
SEARCH DETAIL
...