Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Radiol ; 166: 110977, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37481832

ABSTRACT

PURPOSE: High helical pitch scanning minimizes scan times in CT imaging, and thus also minimizes motion artifact and mis-synchronization with contrast bolus. However, high pitch produces helical artifacts that may adversely affect diagnostic image quality. This study aims to determine the severity and incidence of helical artifacts in abdominal CT imaging and their relation to the helical pitch scan parameter. METHODS: To obtain a dataset with varying pitch values, we used CT exam data both internal and external to our center. A cohort of 59 consecutive adult patients receiving an abdomen CT examination at our center with an accompanying prior examination from an external center was selected for retrospective review. Two expert observers performed a blinded rating of helical artifact in each examination using a five-point Likert scale. The incidence of artifacts with respect to the helical pitch was assessed. A generalized linear mixed-effects regression (GLMER) model, with study arm (Internal or External to our center) and helical pitch as the fixed-effect predictor variables, was fit to the artifact ratings, and significance of the predictor variables was tested. RESULTS: For a pitch of <0.75, the proportion of exams with mild or worse helical artifacts (Likert scores of 1-3) was <1%. The proportion increased to 16% for exams with pitch between 0.75 and 1.2, and further increased to 78% for exams with a pitch greater than 1.2. Pitch was significantly associated with helical artifact in the GLMER model (p = 2.8 × 10-9), while study arm was not a significant factor (p = 0.76). CONCLUSION: The incidence and severity of helical artifact increased with helical pitch. This difference persisted even after accounting for the potential confounding factor of the center where the study was performed.


Subject(s)
Artifacts , Tomography, X-Ray Computed , Adult , Humans , Tomography, X-Ray Computed/methods , Motion , Retrospective Studies , Abdomen/diagnostic imaging , Phantoms, Imaging
2.
Clin Imaging ; 93: 52-59, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36375364

ABSTRACT

OBJECTIVES: To provide our oncology-specific adult abdominal-pelvic CT reference levels for image noise and radiation dose from a high-volume, oncologic, tertiary referral center. METHODS: The portal venous phase abdomen-pelvis acquisition was assessed for image noise and radiation dose in 13,320 contrast-enhanced CT examinations. Patient size (effective diameter) and radiation dose (CTDIvol) were recorded using a commercial software system, and image noise (Global Noise metric) was quantified using a custom processing system. The reference level and range for dose and noise were calculated for the full dataset, and for examinations grouped by CT scanner model. Dose and noise reference levels were also calculated for exams grouped by five different patient size categories. RESULTS: The noise reference level was 11.25 HU with a reference range of 10.25-12.25 HU. The dose reference level at a median effective diameter of 30.7 cm was 26.7 mGy with a reference range of 19.6-37.0 mGy. Dose increased with patient size; however, image noise remained approximately constant within the noise reference range. The doses were 2.1-2.5 times than the doses in the ACR DIR registry for corresponding patient sizes. The image noise was 0.63-0.75 times the previously published reference level in abdominal-pelvic CT examinations. CONCLUSIONS: Our oncology-specific abdominal-pelvic CT dose reference levels are higher than in the ACR dose index registry and our oncology-specific image noise reference levels are lower than previously proposed image noise reference levels. ADVANCES IN KNOWLEDGE: This study reports reference image noise and radiation dose levels appropriate for the indication of abdomen-pelvis CT examination for cancer diagnosis and staging. The difference in these reference levels from non-oncology-specific CT examinations highlight a need for indication-specific, dose index and image quality reference registries.


Subject(s)
Pelvis , Radiography, Abdominal , Adult , Humans , Radiography, Abdominal/methods , Radiation Dosage , Pelvis/diagnostic imaging , Abdomen/diagnostic imaging , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...