Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
2.
Front Immunol ; 13: 956156, 2022.
Article in English | MEDLINE | ID: mdl-35983064

ABSTRACT

Shifting levels of E proteins and Id factors are pivotal in T cell commitment and differentiation, both in the thymus and in the periphery. Id2 and Id3 are two different factors that prevent E proteins from binding to their target gene cis-regulatory sequences and inducing gene expression. Although they use the same mechanism to suppress E protein activity, Id2 and Id3 play very different roles in T cell development and CD4 T cell differentiation. Id2 imposes an irreversible choice in early T cell precursors between innate and adaptive lineages, which can be thought of as a railway switch that directs T cells down one path or another. By contrast, Id3 acts in a transient fashion downstream of extracellular signals such as T cell receptor (TCR) signaling. TCR-dependent Id3 upregulation results in the dislodging of E proteins from their target sites while chromatin remodeling occurs. After the cessation of Id3 expression, E proteins can reassemble in the context of a new genomic landscape and molecular context that allows induction of different E protein target genes. To describe this mode of action, we have developed the "Clutch" model of differentiation. In this model, Id3 upregulation in response to TCR signaling acts as a clutch that stops E protein activity ("clutch in") long enough to allow shifting of the genomic landscape into a different "gear", resulting in accessibility to different E protein target genes once Id3 decreases ("clutch out") and E proteins can form new complexes on the DNA. While TCR signal strength and cytokine signaling play a role in both peripheral and thymic lineage decisions, the remodeling of chromatin and E protein target genes appears to be more heavily influenced by the cytokine milieu in the periphery, whereas the outcome of Id3 activity during T cell development in the thymus appears to depend more on the TCR signal strength. Thus, while the Clutch model applies to both CD4 T cell differentiation and T cell developmental transitions within the thymus, changes in chromatin accessibility are modulated by biased inputs in these different environments. New emerging technologies should enable a better understanding of the molecular events that happen during these transitions, and how they fit into the gene regulatory networks that drive T cell development and differentiation.


Subject(s)
Inhibitor of Differentiation Protein 2 , Inhibitor of Differentiation Proteins , Cell Differentiation/genetics , Chromatin , Cytokines/genetics , Inhibitor of Differentiation Protein 2/genetics , Inhibitor of Differentiation Protein 2/metabolism , Inhibitor of Differentiation Proteins/genetics , Inhibitor of Differentiation Proteins/metabolism , Receptors, Antigen, T-Cell/genetics , Signal Transduction , T-Lymphocytes/metabolism
3.
Front Immunol ; 13: 848577, 2022.
Article in English | MEDLINE | ID: mdl-35990644

ABSTRACT

The E protein transcription factors E2A and HEB are critical for many developmental processes, including T cell development. We have shown that the Tcf12 locus gives rise to two distinct HEB proteins, with alternative (HEBAlt) and canonical (HEBCan) N-terminal domains, which are co-expressed during early T cell development. While the functional domains of HEBCan have been well studied, the nature of the HEBAlt-specific (Alt) domain has been obscure. Here we provide compelling evidence that the Alt domain provides a site for the molecular integration of cytokine signaling and E protein activity. Our results indicate that phosphorylation of a unique YYY motif in the Alt domain increases HEBAlt activity by 10-fold, and that this increase is dependent on Janus kinase activity. To enable in vivo studies of HEBAlt in the T cell context, we generated ALT-Tg mice, which can be induced to express a HA-tagged HEBAlt coding cassette in the presence of Cre recombinases. Analysis of ALT-Tg mice on the Vav-iCre background revealed a minor change in the ratio of ISP cells to CD8+ SP cells, and a mild shift in the ratio of T cells to B cells in the spleen, but otherwise the thymus, spleen, and bone marrow lymphocyte subsets were comparable at steady state. However, kinetic analysis of T cell development in OP9-DL4 co-cultures revealed a delay in early T cell development and a partial block at the DN to DP transition when HEBAlt levels or activity were increased. We also observed that HEBCan and HEBAlt displayed significant differences in protein stability that were resolved in the thymocyte context. Finally, a proteomic screen identified STAT1 and Xpo1 as potential members of HEBAlt-containing complexes in thymocytes, consistent with JAK-induced activation of HEBAlt accompanied by translocation to the nucleus. Thus, our results show that the Alt domain confers access to multiple layers of post-translational control to HEBAlt that are not available to HEBCan, and thus may serve as a rheostat to tune E protein activity levels as cells move through different thymic signaling environments during T cell development.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Cell Differentiation , T-Lymphocytes , Animals , Basic Helix-Loop-Helix Transcription Factors/immunology , Cell Differentiation/immunology , Kinetics , Mice , Proteomics , T-Lymphocytes/immunology , Transcription Factors/immunology
4.
WIREs Mech Dis ; 14(6): e1578, 2022 11.
Article in English | MEDLINE | ID: mdl-35848146

ABSTRACT

γδ T cells are widely distributed throughout mucosal and epithelial cell-rich tissues and are an important early source of IL-17 in response to several pathogens. Like αß T cells, γδ T cells undergo a stepwise process of development in the thymus that requires recombination of genome-encoded segments to assemble mature T cell receptor (TCR) genes. This process is tightly controlled on multiple levels to enable TCR segment assembly while preventing the genomic instability inherent in the double-stranded DNA breaks that occur during this process. Each TCR locus has unique aspects in its structure and requirements, with different types of regulation before and after the αß/γδ T cell fate choice. It has been known that Runx and Myb are critical transcriptional regulators of TCRγ and TCRδ expression, but the roles of E proteins in TCRγ and TCRδ regulation have been less well explored. Multiple lines of evidence show that E proteins are involved in TCR expression at many different levels, including the regulation of Rag recombinase gene expression and protein stability, induction of germline V segment expression, chromatin remodeling, and restriction of the fetal and adult γδTCR repertoires. Importantly, E proteins interact directly with the cis-regulatory elements of the TCRγ and TCRδ loci, controlling the predisposition of a cell to become an αß T cell or a γδ T cell, even before the lineage-dictating TCR signaling events. This article is categorized under: Immune System Diseases > Stem Cells and Development Immune System Diseases > Genetics/Genomics/Epigenetics.


Subject(s)
Receptors, Antigen, T-Cell, alpha-beta , Receptors, Antigen, T-Cell, gamma-delta , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, gamma-delta/genetics , Thymus Gland , Cell Differentiation , Transcription Factors
5.
J Immunol ; 209(1): 77-92, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35705252

ABSTRACT

The zinc-finger transcription factor GATA-3 plays a crucial role during early T cell development and also dictates later T cell differentiation outcomes. However, its role and collaboration with the Notch signaling pathway in the induction of T lineage specification and commitment have not been fully elucidated. We show that GATA-3 deficiency in mouse hematopoietic progenitors results in an early block in T cell development despite the presence of Notch signals, with a failure to upregulate Bcl11b expression, leading to a diversion along a myeloid, but not a B cell, lineage fate. GATA-3 deficiency in the presence of Notch signaling results in the apoptosis of early T lineage cells, as seen with inhibition of CDK4/6 (cyclin-dependent kinases 4 and 6) function, and dysregulated cyclin-dependent kinase inhibitor 2b (Cdkn2b) expression. We also show that GATA-3 induces Bcl11b, and together with Bcl11b represses Cdkn2b expression; however, loss of Cdkn2b failed to rescue the developmental block of GATA-3-deficient T cell progenitor. Our findings provide a signaling and transcriptional network by which the T lineage program in response to Notch signals is realized.


Subject(s)
GATA3 Transcription Factor/metabolism , Signal Transduction , T-Lymphocytes , Animals , Cell Differentiation , Cell Lineage , Cyclin-Dependent Kinase Inhibitor Proteins , Gene Regulatory Networks , Mice , Repressor Proteins/genetics , Repressor Proteins/metabolism , T-Lymphocytes/metabolism , Tumor Suppressor Proteins/metabolism
6.
Methods Mol Biol ; 2421: 243-265, 2022.
Article in English | MEDLINE | ID: mdl-34870824

ABSTRACT

Fetal thymic organ culture (FTOC) provides a method for analyzing T cell development in a physiological context outside the animal. This technique enables studies of genetically altered mice that are embryonic or neonatal lethal, in addition to bypassing the complication of migration of successive waves of T cells out of the thymus. The hanging drop method involves depletion of thymocytes from host lobes using deoxyguanosine, followed by reconstitution with hematopoietic progenitors. This method has become standard for analysis of fetal liver precursors, bone marrow precursors, and early thymocytes. However, difficulties are encountered in the analysis of γδ T cell precursors using this method. We have developed a modification of FTOC in which partial depletion of hematopoietic precursors by shortened deoxyguanosine treatment, coupled with the use of TCRδ-deficient host lobes, enables engraftment and development of fetal γδTCR+ thymocytes. This method allows comparisons of development and functional differentiation of γδ T cell precursors between cells of different genotypes or treatments, in the context of a permissive thymic microenvironment.


Subject(s)
Fetus , Animals , Bone Marrow , Cell Differentiation , Deoxyguanosine , Mice , Organ Culture Techniques , T-Lymphocytes , Thymus Gland
8.
Nat Commun ; 12(1): 5023, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34408144

ABSTRACT

T cells are pivotal effectors of the immune system and can be harnessed as therapeutics for regenerative medicine and cancer immunotherapy. An unmet challenge in the field is the development of a clinically relevant system that is readily scalable to generate large numbers of T-lineage cells from hematopoietic stem/progenitor cells (HSPCs). Here, we report a stromal cell-free, microbead-based approach that supports the efficient in vitro development of both human progenitor T (proT) cells and T-lineage cells from CD34+cells sourced from cord blood, GCSF-mobilized peripheral blood, and pluripotent stem cells (PSCs). DL4-µbeads, along with lymphopoietic cytokines, induce an ordered sequence of differentiation from CD34+ cells to CD34+CD7+CD5+ proT cells to CD3+αß T cells. Single-cell RNA sequencing of human PSC-derived proT cells reveals a transcriptional profile similar to the earliest thymocytes found in the embryonic and fetal thymus. Furthermore, the adoptive transfer of CD34+CD7+ proT cells into immunodeficient mice demonstrates efficient thymic engraftment and functional maturation of peripheral T cells. DL4-µbeads provide a simple and robust platform to both study human T cell development and facilitate the development of engineered T cell therapies from renewable sources.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Calcium-Binding Proteins/immunology , Hematopoietic Stem Cells/cytology , Lymphopoiesis , Primary Immunodeficiency Diseases/therapy , T-Lymphocytes/cytology , Adaptor Proteins, Signal Transducing/genetics , Animals , Antigens, CD34/genetics , Antigens, CD34/immunology , Calcium-Binding Proteins/genetics , Cell Lineage , Cell- and Tissue-Based Therapy , Cells, Cultured , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/immunology , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/immunology , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/immunology , Primary Immunodeficiency Diseases/physiopathology , T-Lymphocytes/immunology , T-Lymphocytes/transplantation
9.
Cell Rep ; 35(10): 109227, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34107257

ABSTRACT

γδ T cells form an integral arm of the immune system and are critical during protective and destructive immunity. However, how γδ T cells are functionally programmed in vivo remains unclear. Here, we employ RBPJ-inducible and KN6-transgenic mice to assess the roles of ontogenic timing, T cell receptor (TCR) signal strength, and Notch signaling. We find skewing of Vγ1+ cells toward the PLZF+Lin28b+ lineage at the fetal stage. Generation of interleukin-17 (IL-17)-producing γδ T cells is favored during, although not exclusive to, the fetal stage. Surprisingly, Notch signaling is dispensable for peripheral γδ T cell IL-17 production. Strong TCR signals, together with Notch, promote IL-4 differentiation. Conversely, less strong TCR signals promote Notch-independent IL-17 differentiation. Single-cell transcriptomic analysis reveals differential programming instilled by TCR signal strength and Notch for specific subsets. Thus, our results precisely define the roles of ontogenic timing, TCR signal strength, and Notch signaling in γδ T cell functional programming in vivo.


Subject(s)
Interferon-gamma/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Notch/metabolism , Animals , Cell Differentiation , Humans , Mice , Signal Transduction
10.
J Immunol ; 206(10): 2271-2276, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33941655

ABSTRACT

T cell development is predicated on the successful rearrangement of the TCR gene loci, which encode for Ag-specific receptors. Recombination-activating gene (RAG) 2 is required for TCR gene rearrangements, which occur during specific stages of T cell development. In this study, we differentiated human pluripotent stem cells with a CRISPR/Cas9-directed deletion of the RAG2 gene (RAG2-KO) to elucidate the requirement for the TCR ß-chain in mediating ß-selection during human T cell development. In stark contrast to mice, human RAG2-KO T lineage progenitors progressed to the CD4+CD8+ double-positive (DP) stage in the absence of TCRß rearrangements. Nonetheless, RAG2-KO DPs retrovirally transduced to express a rearranged TCR ß-chain showed increased survival and proliferation as compared with control-transduced RAG2-KO DPs. Furthermore, transcriptomic analysis showed that TCRß- and control-transduced RAG2-KO DPs differed in gene pathways related to survival and proliferation. Our results provide important insights as to the distinct requirement for the TCR ß-chain during human T cell development.


Subject(s)
CD4 Antigens/metabolism , CD8 Antigens/metabolism , Cell Differentiation/genetics , Human Embryonic Stem Cells/cytology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , T-Lymphocytes/immunology , Animals , Cell Line, Tumor , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Gene Knockout Techniques , Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/genetics , Hematopoiesis/genetics , Humans , Lymphocyte Activation/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics , Transduction, Genetic
11.
Development ; 147(23)2020 12 13.
Article in English | MEDLINE | ID: mdl-33144398

ABSTRACT

E protein transcription factors are crucial for many cell fate decisions. However, the roles of E proteins in the germ-layer specification of human embryonic stem cells (hESCs) are poorly understood. We disrupted the TCF3 gene locus to delete the E protein E2A in hESCs. E2A knockout (KO) hESCs retained key features of pluripotency, but displayed decreased neural ectoderm coupled with enhanced mesoendoderm outcomes. Genome-wide analyses showed that E2A directly regulates neural ectoderm and Nodal pathway genes. Accordingly, inhibition of Nodal or E2A overexpression partially rescued the neural ectoderm defect in E2A KO hESCs. Loss of E2A had little impact on the epigenetic landscape of hESCs, whereas E2A KO neural precursors displayed increased accessibility of the gene locus encoding the Nodal agonist CRIPTO. Double-deletion of both E2A and HEB (TCF12) resulted in a more severe neural ectoderm defect. Therefore, this study reveals critical context-dependent functions for E2A in human neural ectoderm fate specification.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , GPI-Linked Proteins/genetics , Human Embryonic Stem Cells/cytology , Intercellular Signaling Peptides and Proteins/genetics , Neoplasm Proteins/genetics , Nodal Protein/genetics , Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Cell Differentiation/genetics , Cell Lineage/genetics , Ectoderm/growth & development , Ectoderm/metabolism , Epigenesis, Genetic/genetics , Gene Expression Regulation, Developmental/genetics , Genome, Human/genetics , Human Embryonic Stem Cells/metabolism , Humans , Neural Stem Cells/cytology , Nodal Protein/antagonists & inhibitors , Signal Transduction/genetics
12.
Immunol Rev ; 298(1): 181-197, 2020 11.
Article in English | MEDLINE | ID: mdl-33058287

ABSTRACT

γδ T cells acquire their functional properties in the thymus, enabling them to exert rapid innate-like responses. To understand how distinct γδ T cell subsets are generated, we have developed a Two-Stage model for γδ T cell development. This model is predicated on the finding that γδTCR signal strength impacts E protein activity through graded upregulation of Id3. Our model proposes that cells enter Stage 1 in response to a γδTCR signaling event in the cortex that activates a γδ T cell-specific gene network. Part of this program includes the upregulation of chemokine receptors that guide them to the medulla. In the medulla, Stage 1 cells receive distinct combinations of γδTCR, cytokine, and/co-stimulatory signals that induce their transit into Stage 2, either toward the γδT1 or the γδT17 lineage. The intersection between γδTCR and cytokine signals can tune Id3 expression, leading to different outcomes even in the presence of strong γδTCR signals. The thymic signaling niches required for γδT17 development are segregated in time and space, providing transient windows of opportunity during ontogeny. Understanding the regulatory context in which E proteins operate at different stages will be key in defining how their activity levels impose functional outcomes.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta , Signal Transduction , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocyte Subsets
13.
Stem Cell Reports ; 13(6): 1126-1141, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31813827

ABSTRACT

Induced pluripotent stem cells (iPSC) derived from healthy individuals are important controls for disease-modeling studies. Here we apply precision health to create a high-quality resource of control iPSCs. Footprint-free lines were reprogrammed from four volunteers of the Personal Genome Project Canada (PGPC). Multilineage-directed differentiation efficiently produced functional cortical neurons, cardiomyocytes and hepatocytes. Pilot users demonstrated versatility by generating kidney organoids, T lymphocytes, and sensory neurons. A frameshift knockout was introduced into MYBPC3 and these cardiomyocytes exhibited the expected hypertrophic phenotype. Whole-genome sequencing-based annotation of PGPC lines revealed on average 20 coding variants. Importantly, nearly all annotated PGPC and HipSci lines harbored at least one pre-existing or acquired variant with cardiac, neurological, or other disease associations. Overall, PGPC lines were efficiently differentiated by multiple users into cells from six tissues for disease modeling, and variant-preferred healthy control lines were identified for specific disease settings.


Subject(s)
Cell Differentiation , Cell Lineage , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , CRISPR-Cas Systems , Cell Self Renewal , Cell Separation , Ectoderm/cytology , Ectoderm/metabolism , Gene Editing , Humans , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Neurons/cytology , Neurons/metabolism , Organoids , Phenotype , T-Lymphocytes/metabolism , Whole Genome Sequencing
14.
Immunol Cell Biol ; 96(9): 994-1007, 2018 10.
Article in English | MEDLINE | ID: mdl-29754419

ABSTRACT

γδ T-cells perform a wide range of tissue- and disease-specific functions that are dependent on the effector cytokines produced by these cells. However, the aggregate signals required for the development of interferon-γ (IFNγ) and interleukin-17 (IL-17) producing γδ T-cells remain unknown. Here, we define the cues involved in the functional programming of γδ T-cells, by examining the roles of T-cell receptor (TCR), Notch, and cytokine-receptor signaling. KN6 γδTCR-transduced Rag2-/- T-cell progenitors were cultured on stromal cells variably expressing TCR and Notch ligands, supplemented with different cytokines. We found that distinct combinations of these signals are required to program IFNγ versus IL-17 producing γδ T-cell subsets, with Notch and weak TCR ligands optimally enabling development of γδ17 cells in the presence of IL-1ß, IL-21 and IL-23. Notably, these cytokines were also shown to be required for the intrathymic development of γδ17 cells. Together, this work provides a framework of how signals downstream of TCR, Notch and cytokine receptors integrate to program the effector function of IFNγ and IL-17 producing γδ T-cell subsets.


Subject(s)
Cell Differentiation , Interferon-gamma/immunology , Interleukin-17/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/cytology , Animals , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Receptors, Notch/immunology , Signal Transduction , T-Lymphocytes/immunology
15.
Nat Commun ; 8(1): 2004, 2017 12 08.
Article in English | MEDLINE | ID: mdl-29222418

ABSTRACT

IL-17-producing γδ T (γδT17) cells are critical components of the innate immune system. However, the gene networks that control their development are unclear. Here we show that HEB (HeLa E-box binding protein, encoded by Tcf12) is required for the generation of a newly defined subset of fetal-derived CD73- γδT17 cells. HEB is required in immature CD24+CD73- γδ T cells for the expression of Sox4, Sox13, and Rorc, and these genes are repressed by acute expression of the HEB antagonist Id3. HEB-deficiency also affects mature CD73+ γδ T cells, which are defective in RORγt expression and IL-17 production. Additionally, the fetal TCRγ chain repertoire is altered, and peripheral Vγ4 γδ T cells are mostly restricted to the IFNγ-producing phenotype in HEB-deficient mice. Therefore, our work identifies HEB-dependent pathways for the development of CD73+ and CD73- γδT17 cells, and provides mechanistic evidence for control of the γδT17 gene network by HEB.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/physiology , Fetal Development/immunology , Gene Expression Regulation, Developmental/immunology , Immunity, Innate , Intraepithelial Lymphocytes/physiology , 5'-Nucleotidase/metabolism , Animals , Autoantigens/metabolism , Cell Differentiation , Female , Interferon-gamma/metabolism , Interleukin-17/immunology , Interleukin-17/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, Antigen, T-Cell, gamma-delta/metabolism , SOXC Transcription Factors/metabolism
16.
Immunol Cell Biol ; 95(10): 933-942, 2017 11.
Article in English | MEDLINE | ID: mdl-28890536

ABSTRACT

Interleukin-7 receptor (IL-7R) signaling is critical for multiple stages of T-cell development, but a role in the establishment of the mature thymic architecture needed for T-cell development and thymocyte selection has not been established. Crosstalk signals between developing thymocytes and thymic epithelial cell (TEC) precursors are critical for their differentiation into cortical TECs (cTECs) and medullary TECs (mTECs). In addition, mTEC-derived factors have been implicated in the recruitment of thymic dendritic cells (DCs) and intrathymic DC development. We therefore examined corticomedullary structure and DC populations in the thymus of Il7r-/- mice. Analysis of TEC phenotype and spatial organization revealed a striking shift in the mTEC to cTEC ratio, accompanied by disorganized corticomedullary structure. Several of the thymic subsets known to have DC potential were nearly absent, accompanied by reductions in DC cell numbers. We also examined chemokine expression in the Il7r-/- thymus, and found a significant decrease in mTEC-derived CCR7 ligand expression, and high levels of cTEC-derived chemokines, including CCL25 and CXCL12. Although splenic DCs were similarly affected, bone marrow (BM) precursors capable of giving rise to DCs were unperturbed. Finally, BM chimeras showed that there was no intrinsic need for IL-7R signaling in the development or recruitment of thymic DCs, but that the provision of wild-type progenitors enhanced reconstitution of thymic DCs from Il7r-/- progenitors. Our results are therefore supportive of a model in which Il7r-dependent cells are required to set up the microenvironments that allow accumulation of thymic DCs.


Subject(s)
Dendritic Cells/physiology , Epithelial Cells/physiology , Receptors, Interleukin-7/metabolism , T-Lymphocytes/physiology , Thymus Gland/immunology , Animals , Cell Differentiation , Cells, Cultured , Cellular Microenvironment , Chemokine CXCL12/metabolism , Chemokines, CC/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, CCR7/metabolism , Receptors, Interleukin-7/genetics
17.
Stem Cell Reports ; 9(3): 779-795, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28803914

ABSTRACT

Hematopoietic stem cells arise from mesoderm-derived hemogenic endothelium (HE) during embryogenesis in a process termed endothelial-hematopoietic transition (EHT). To better understand the gene networks that control this process, we investigated the role of the transcription factor HEB (TCF12) by disrupting the TCF12 gene locus in human embryonic stem cells (hESCs) and inducing them to differentiate toward hematopoietic outcomes. HEB-deficient hESCs retained key features of pluripotency, including expression of SOX2 and SSEA-4 and teratoma formation, while NANOG expression was reduced. Differentiation of HEB-/- hESCs toward hematopoietic fates revealed a severe defect in mesodermal development accompanied by decreased expression of regulators of mesoendodermal fate choices. We also identified independent defects in HE formation at the molecular and cellular levels, as well as a failure of T cell development. All defects were largely rescued by re-expression of HEB. Taken together, our results identify HEB as a critical regulator of human mesodermal and hematopoietic specification.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Targeting , Hematopoiesis , Mesoderm/cytology , Antigens, CD/metabolism , Body Patterning , CRISPR-Cas Systems/genetics , Cell Differentiation , Cell Lineage , Cells, Cultured , Coculture Techniques , Embryoid Bodies/cytology , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Endoderm/cytology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Gene Expression Profiling , Genetic Loci , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Myeloid Cells/cytology , Myeloid Cells/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Sequence Analysis, RNA , T-Lymphocytes/cytology , T-Lymphocytes/metabolism
18.
Dev Biol ; 416(1): 149-161, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27265865

ABSTRACT

E-proteins are basic helix-loop-helix (bHLH) transcription factors with essential roles in animal development. In mammals, these are encoded by three loci: E2-2 (ITF-2/ME2/SEF2/TCF4), E2A (TCF3), and HEB (ME1/REB/TCF12). The HEB and E2-2 paralogs are expressed as alternative (Alt) isoforms with distinct N-terminal sequences encoded by unique exons under separate regulatory control. Expression of these alternative transcripts is restricted relative to the longer (Can) forms, suggesting distinct regulatory roles, although the functions of the Alt proteins remain poorly understood. Here, we characterize the single sea urchin E-protein ortholog (SpE-protein). The organization of the SpE-protein gene closely resembles that of the extended HEB/E2-2 vertebrate loci, including a transcript that initiates at a homologous alternative transcription start site (SpE-Alt). The existence of an Alt form in the sea urchin indicates that this feature predates the emergence of the vertebrates. We present additional evidence indicating that this transcript was present in the common bilaterian ancestor. In contrast to the widely expressed canonical form (SpE-Can), SpE-Alt expression is tightly restricted. SpE-Alt is expressed in two phases: first in aboral non-skeletogenic mesenchyme (NSM) cells and then in oral NSM cells preceding their differentiation and ingression into the blastocoel. Derivatives of these cells mediate immune response in the larval stage. Inhibition of SpE-Alt activity interferes with these events. Notably, although the two isoforms are initially co-expressed, as these cells differentiate, SpE-Can is excluded from the SpE-Alt(+) cell population. This mutually exclusive expression is dependent on SpE-Alt function, which reveals a previously undescribed negative regulatory linkage between the two E-protein forms. Collectively, these findings reorient our understanding of the evolution of this transcription factor family and highlight fundamental properties of E-protein biology.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Leukopoiesis , Strongylocentrotus purpuratus/embryology , Animals , Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/genetics , Blastula/cytology , Blastula/embryology , Conserved Sequence , Exons , Gene Expression Regulation, Developmental , Protein Isoforms , Stem Cells , Strongylocentrotus purpuratus/genetics , Strongylocentrotus purpuratus/immunology
19.
Cell Immunol ; 296(1): 70-5, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25866401

ABSTRACT

γδ T-cells boast an impressive functional repertoire that can paint them as either champions or villains depending on the environmental and immunological cues. Understanding the function of the various effector γδ subsets necessitates tracing the developmental program of these subsets, including the point of lineage bifurcation from αß T-cells. Here, we review the importance of signals from the T-cell receptor (TCR) in determining αß versus γδ lineage fate, and further discuss how the molecular components of this pathway may influence the developmental programming of γδ T-cells functional subsets. Additionally, we discuss the role of temporal windows in restricting the development of IL-17 producing γδ T-cell subtypes, and explore whether fetal and adult hematopoietic progenitors maintain the same potential for giving rise to this important subset.


Subject(s)
Hematopoietic Stem Cells/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocyte Subsets/immunology , Cell Differentiation , Cell Lineage/immunology , Hematopoietic Stem Cells/cytology , Humans , Interleukin-17/immunology , Lymphocyte Activation/immunology , Signal Transduction/immunology , T-Lymphocyte Subsets/cytology
20.
Adv Hematol ; 2013: 949513, 2013.
Article in English | MEDLINE | ID: mdl-23476654

ABSTRACT

Dendritic cells (DCs) are essential components of the immune system and contribute to immune responses by activating or tolerizing T cells. DCs comprise a heterogeneous mixture of subsets that are located throughout the body and possess distinct and specialized functions. Although numerous defined precursors from the bone marrow and spleen have been identified, emerging data in the field suggests many alternative routes of DC differentiation from precursors with multilineage potential. Here, we discuss how the combinatorial expression of transcription factors can promote one DC lineage over another as well as the integration of cytokine signaling in this process.

SELECTION OF CITATIONS
SEARCH DETAIL
...