Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
bioRxiv ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38370802

ABSTRACT

Changes in brain mitochondrial metabolism are coincident with functional decline; however, direct links between the two have not been established. Here, we show that mitochondrial targeting via the adiponectin receptor activator AdipoRon (AR) clears neurofibrillary tangles (NFTs) and rescues neuronal tauopathy-associated defects. AR reduced levels of phospho-tau and lowered NFT burden by a mechanism involving the energy-sensing kinase AMPK and the growth-sensing kinase GSK3b. The transcriptional response to AR included broad metabolic and functional pathways. Induction of lysosomal pathways involved activation of LC3 and p62, and restoration of neuronal outgrowth required the stress-responsive kinase JNK. Negative consequences of NFTs on mitochondrial activity, ATP production, and lipid stores were corrected. Defects in electrophysiological measures (e.g., resting potential, resistance, spiking profiles) were also corrected. These findings reveal a network linking mitochondrial function, cellular maintenance processes, and electrical aspects of neuronal function that can be targeted via adiponectin receptor activation.

2.
BMC Biol ; 21(1): 287, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38066609

ABSTRACT

Physical activity and several pharmacological approaches individually combat age-associated conditions and extend healthy longevity in model systems. It is tantalizing to extrapolate that combining geroprotector drugs with exercise could extend healthy longevity beyond any individual treatment. However, the current dogma suggests that taking leading geroprotector drugs on the same day as exercise may limit several health benefits. Here, we review leading candidate geroprotector drugs and their interactions with exercise and highlight salient gaps in knowledge that need to be addressed to identify if geroprotector drugs can have a harmonious relationship with exercise.


Subject(s)
Longevity , Senotherapeutics , Humans , Exercise , Aging
3.
J Proteome Res ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37991985

ABSTRACT

Sarcopenia is a progressive disorder characterized by age-related loss of skeletal muscle mass and function. Although significant progress has been made over the years to identify the molecular determinants of sarcopenia, the precise mechanisms underlying the age-related loss of contractile function remains unclear. Advances in "omics" technologies, including mass spectrometry-based proteomic and metabolomic analyses, offer great opportunities to better understand sarcopenia. Herein, we performed mass spectrometry-based analyses of the vastus lateralis from young, middle-aged, and older rhesus monkeys to identify molecular signatures of sarcopenia. In our proteomic analysis, we identified proteins that change with age, including those involved in adenosine triphosphate and adenosine monophosphate metabolism as well as fatty acid beta oxidation. In our untargeted metabolomic analysis, we identified metabolites that changed with age largely related to energy metabolism including fatty acid beta oxidation. Pathway analysis of age-responsive proteins and metabolites revealed changes in muscle structure and contraction as well as lipid, carbohydrate, and purine metabolism. Together, this study discovers new metabolic signatures and offers new insights into the molecular mechanisms underlying sarcopenia for the evaluation and monitoring of a therapeutic treatment of sarcopenia.

4.
Res Sq ; 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37986947

ABSTRACT

Biomarkers of biological age that predict the risk of disease and expected lifespan better than chronological age are key to efficient and cost-effective healthcare1-3. To advance a personalized approach to healthcare, such biomarkers must reliably and accurately capture individual biology, predict biological age, and provide scalable and cost-effective measurements. We developed a novel approach - image-based chromatin and epigenetic age (ImAge) that captures intrinsic progressions of biological age, which readily emerge as principal changes in the spatial organization of chromatin and epigenetic marks in single nuclei without regression on chronological age. ImAge captured the expected acceleration or deceleration of biological age in mice treated with chemotherapy or following a caloric restriction regimen, respectively. ImAge from chronologically identical mice inversely correlated with their locomotor activity (greater activity for younger ImAge), consistent with the widely accepted role of locomotion as an aging biomarker across species. Finally, we demonstrated that ImAge is reduced following transient expression of OSKM cassette in the liver and skeletal muscles and reveals heterogeneity of in vivo reprogramming. We propose that ImAge represents the first-in-class imaging-based biomarker of aging with single-cell resolution.

5.
bioRxiv ; 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37808866

ABSTRACT

The brain is a high energy tissue, and the cell types of which it is comprised are distinct in function and in metabolic requirements. The transcriptional co-activator PGC-1a is a master regulator of mitochondrial function and is highly expressed in the brain; however, its cell-type specific role in regulating metabolism has not been well established. Here, we show that PGC-1a is responsive to aging and that expression of the neuron specific PGC-1a isoform allows for specialization in metabolic adaptation. Transcriptional profiles of the cortex from male mice show an impact of age on immune, inflammatory, and neuronal functional pathways and a highly integrated metabolic response that is associated with decreased expression of PGC-1a. Proteomic analysis confirms age-related changes in metabolism and further shows changes in ribosomal and RNA splicing pathways. We show that neurons express a specialized PGC-1a isoform that becomes active during differentiation from stem cells and is further induced during the maturation of isolated neurons. Neuronal but not astrocyte PGC-1a responds robustly to inhibition of the growth sensitive kinase GSK3b, where the brain specific promoter driven dominant isoform is repressed. The GSK3b inhibitor lithium broadly reprograms metabolism and growth signaling, including significantly lower expression of mitochondrial and ribosomal pathway genes and suppression of growth signaling, which are linked to changes in mitochondrial function and neuronal outgrowth. In vivo, lithium treatment significantly changes the expression of genes involved in cortical growth, endocrine, and circadian pathways. These data place the GSK3b/PGC-1a axis centrally in a growth and metabolism network that is directly relevant to brain aging.

6.
Front Aging Neurosci ; 15: 1214932, 2023.
Article in English | MEDLINE | ID: mdl-37719875

ABSTRACT

Introduction: Metabolomics technology facilitates studying associations between small molecules and disease processes. Correlating metabolites in cerebrospinal fluid (CSF) with Alzheimer's disease (AD) CSF biomarkers may elucidate additional changes that are associated with early AD pathology and enhance our knowledge of the disease. Methods: The relative abundance of untargeted metabolites was assessed in 161 individuals from the Wisconsin Registry for Alzheimer's Prevention. A metabolome-wide association study (MWAS) was conducted between 269 CSF metabolites and protein biomarkers reflecting brain amyloidosis, tau pathology, neuronal and synaptic degeneration, and astrocyte or microglial activation and neuroinflammation. Linear mixed-effects regression analyses were performed with random intercepts for sample relatedness and repeated measurements and fixed effects for age, sex, and years of education. The metabolome-wide significance was determined by a false discovery rate threshold of 0.05. The significant metabolites were replicated in 154 independent individuals from then Wisconsin Alzheimer's Disease Research Center. Mendelian randomization was performed using genome-wide significant single nucleotide polymorphisms from a CSF metabolites genome-wide association study. Results: Metabolome-wide association study results showed several significantly associated metabolites for all the biomarkers except Aß42/40 and IL-6. Genetic variants associated with metabolites and Mendelian randomization analysis provided evidence for a causal association of metabolites for soluble triggering receptor expressed on myeloid cells 2 (sTREM2), amyloid ß (Aß40), α-synuclein, total tau, phosphorylated tau, and neurogranin, for example, palmitoyl sphingomyelin (d18:1/16:0) for sTREM2, and erythritol for Aß40 and α-synuclein. Discussion: This study provides evidence that CSF metabolites are associated with AD-related pathology, and many of these associations may be causal.

7.
bioRxiv ; 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37577600

ABSTRACT

Sarcopenia is a progressive disorder characterized by age-related loss of skeletal muscle mass and function. Although significant progress has been made over the years to identify the molecular determinants of sarcopenia, the precise mechanisms underlying the age-related loss of contractile function remains unclear. Advances in omics technologies, including mass spectrometry-based proteomic and metabolomic analyses, offer great opportunities to better understand sarcopenia. Herein, we performed mass spectrometry-based analyses of the vastus lateralis from young, middle-aged, and older rhesus monkeys to identify molecular signatures of sarcopenia. In our proteomic analysis, we identified numerous proteins that change with age, including those involved in adenosine triphosphate and adenosine monophosphate metabolism as well as fatty acid beta oxidation. In our untargeted metabolomic analysis, we identified multiple metabolites that changed with age largely related to energy metabolism including fatty acid beta oxidation. Pathway analysis of age-responsive proteins and metabolites revealed changes in muscle structure and contraction as well as lipid, carbohydrate, and purine metabolism. Together, this study discovers new metabolic signatures and offer new insights into the molecular mechanism underlying sarcopenia for the evaluation and monitoring of therapeutic treatment of sarcopenia.

8.
Eur J Epidemiol ; 38(5): 559-571, 2023 May.
Article in English | MEDLINE | ID: mdl-36964431

ABSTRACT

Modifiable factors can influence the risk for Alzheimer's disease (AD) and serve as targets for intervention; however, the biological mechanisms linking these factors to AD are unknown. This study aims to identify plasma metabolites associated with modifiable factors for AD, including MIND diet, physical activity, smoking, and caffeine intake, and test their association with AD endophenotypes to identify their potential roles in pathophysiological mechanisms. The association between each of the 757 plasma metabolites and four modifiable factors was tested in the wisconsin registry for Alzheimer's prevention cohort of initially cognitively unimpaired, asymptomatic middle-aged adults. After Bonferroni correction, the significant plasma metabolites were tested for association with each of the AD endophenotypes, including twelve cerebrospinal fluid (CSF) biomarkers, reflecting key pathophysiologies for AD, and four cognitive composite scores. Finally, causal mediation analyses were conducted to evaluate possible mediation effects. Analyses were performed using linear mixed-effects regression. A total of 27, 3, 23, and 24 metabolites were associated with MIND diet, physical activity, smoking, and caffeine intake, respectively. Potential mediation effects include beta-cryptoxanthin in the association between MIND diet and preclinical Alzheimer cognitive composite score, hippurate between MIND diet and immediate learning, glutamate between physical activity and CSF neurofilament light, and beta-cryptoxanthin between smoking and immediate learning. Our study identified several plasma metabolites that are associated with modifiable factors. These metabolites can be employed as biomarkers for tracking these factors, and they provide a potential biological pathway of how modifiable factors influence the human body and AD risk.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Endophenotypes , Adult , Humans , Middle Aged , Amyloid beta-Peptides/metabolism , Beta-Cryptoxanthin , Biomarkers , Caffeine/adverse effects , Risk Factors , tau Proteins
9.
Cell ; 186(1): 8-9, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36608660

ABSTRACT

Much of our foundational knowledge of cellular biology comes from studies in budding yeast, often described as a simple unicellular eukaryotic model. In this issue of Cell, Correia-Melo et al. describe an unappreciated feature of yeast biology involving intra-cellular metabolite exchange, where cells adapt and respond as part of a community, and go on to show that sharing of resources linked to methionine metabolism enhances longevity of cooperating cells.


Subject(s)
Longevity , Saccharomycetales , Saccharomyces cerevisiae/metabolism , Eukaryotic Cells , Cytoplasm
10.
Sci Rep ; 12(1): 9960, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35705631

ABSTRACT

Metabolic syndrome increases risk of complicating co-morbidities. Current clinical indicators reflect established metabolic impairment, preventing earlier intervention strategies. Here we show that circulating sphingolipids are altered in the very early stages of insulin resistance development. The study involved 16 paired overweight but healthy monkeys, one-half of which spontaneously developed metabolic syndrome over the course of 2 years. Importantly, animals did not differ in adiposity and were euglycemic throughout the study period. Using mass spectrometry, circulating sphingolipids, including ceramides and sphingomyelins, were detected and quantified for healthy and impaired animals at both time points. At time of diagnosis, several ceramides were significantly different between healthy and impaired animals. Correlation analysis revealed differences in the interactions among ceramides in impaired animals at diagnosis and pre-diagnosis when animals were clinically indistinguishable from controls. Furthermore, correlations between ceramides and early-stage markers of insulin resistance, diacylglycerols and non-esterified fatty acids, were distinct for healthy and impaired states. Regression analysis identifies coordinated changes in lipid handling across lipid classes as animals progress from healthy to insulin resistant. Correlations between ceramides and the adipose-derived adipokine adiponectin were apparent in healthy animals but not in the metabolically impaired animals, even in advance of loss in insulin sensitivity. These data suggest that circulating ceramides are clinically relevant in identifying disease risk independent of differences in adiposity, and may be important in devising preventative strategies.


Subject(s)
Insulin Resistance , Metabolic Syndrome , Animals , Ceramides , Macaca mulatta , Metabolic Syndrome/etiology , Obesity/metabolism , Sphingolipids
11.
iScience ; 25(5): 104199, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35494229

ABSTRACT

Aging research is unparalleled in the breadth of disciplines it encompasses, from evolutionary studies examining the forces that shape aging to molecular studies uncovering the underlying mechanisms of age-related functional decline. Despite a common focus to advance our understanding of aging, these disciplines have proceeded along distinct paths with little cross-talk. We propose that the concept of resilience can bridge this gap. Resilience describes the ability of a system to respond to perturbations by returning to its original state. Although resilience has been applied in a few individual disciplines in aging research such as frailty and cognitive decline, it has not been explored as a unifying conceptual framework that is able to connect distinct research fields. We argue that because a resilience-based framework can cross broad physiological levels and time scales it can provide the missing links that connect these diverse disciplines. The resulting framework will facilitate predictive modeling and validation and influence targets and directions in research on the biology of aging.

12.
Cell ; 185(9): 1455-1470, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35487190

ABSTRACT

Diet as a whole, encompassing food composition, calorie intake, and the length and frequency of fasting periods, affects the time span in which health and functional capacity are maintained. Here, we analyze aging and nutrition studies in simple organisms, rodents, monkeys, and humans to link longevity to conserved growth and metabolic pathways and outline their role in aging and age-related disease. We focus on feasible nutritional strategies shown to delay aging and/or prevent diseases through epidemiological, model organism, clinical, and centenarian studies and underline the need to avoid malnourishment and frailty. These findings are integrated to define a longevity diet based on a multi-pillar approach adjusted for age and health status to optimize lifespan and healthspan in humans.


Subject(s)
Caloric Restriction , Longevity , Diet , Nutritional Status
13.
Elife ; 112022 03 17.
Article in English | MEDLINE | ID: mdl-35297761

ABSTRACT

The loss of skeletal muscle function with age, known as sarcopenia, significantly reduces independence and quality of life and can have significant metabolic consequences. Although exercise is effective in treating sarcopenia it is not always a viable option clinically, and currently, there are no pharmacological therapeutic interventions for sarcopenia. Here, we show that chronic treatment with pan-adiponectin receptor agonist AdipoRon improved muscle function in male mice by a mechanism linked to skeletal muscle metabolism and tissue remodeling. In aged mice, 6 weeks of AdipoRon treatment improved skeletal muscle functional measures in vivo and ex vivo. Improvements were linked to changes in fiber type, including an enrichment of oxidative fibers, and an increase in mitochondrial activity. In young mice, 6 weeks of AdipoRon treatment improved contractile force and activated the energy-sensing kinase AMPK and the mitochondrial regulator PGC-1a (peroxisome proliferator-activated receptor gamma coactivator one alpha). In cultured cells, the AdipoRon induced stimulation of AMPK and PGC-1a was associated with increased mitochondrial membrane potential, reorganization of mitochondrial architecture, increased respiration, and increased ATP production. Furthermore, the ability of AdipoRon to stimulate AMPK and PGC1a was conserved in nonhuman primate cultured cells. These data show that AdipoRon is an effective agent for the prevention of sarcopenia in mice and indicate that its effects translate to primates, suggesting it may also be a suitable therapeutic for sarcopenia in clinical application.


Subject(s)
Adiponectin , Receptors, Adiponectin , Adiponectin/metabolism , Animals , Male , Mice , Muscle, Skeletal/metabolism , Piperidines , Primates , Quality of Life , Receptors, Adiponectin/metabolism
14.
Science ; 375(6581): 620-621, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35143311

ABSTRACT

Reverse translation of a human caloric restriction trial finds an immunometabolic regulator.


Subject(s)
Caloric Restriction , Humans
16.
Cell Metab ; 33(11): 2189-2200.e3, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34508697

ABSTRACT

Aging leads to profound changes in glucose homeostasis, weight, and adiposity, which are considered good predictors of health and survival in humans. Direct evidence that these age-associated metabolic alterations are recapitulated in animal models is lacking, impeding progress to develop and test interventions that delay the onset of metabolic dysfunction and promote healthy aging and longevity. We compared longitudinal trajectories, rates of change, and mortality risks of fasting blood glucose, body weight, and fat mass in mice, nonhuman primates, and humans throughout their lifespans and found similar trajectories of body weight and fat in the three species. In contrast, fasting blood glucose decreased late in life in mice but increased over the lifespan of nonhuman primates and humans. Higher glucose was associated with lower mortality in mice but higher mortality in nonhuman primates and humans, providing a cautionary tale for translating age-associated metabolic changes from mice to humans.


Subject(s)
Blood Glucose , Fasting , Adiposity , Animals , Blood Glucose/metabolism , Longevity , Mice , Obesity/metabolism
17.
Science ; 373(6556): 738-739, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34385381
18.
Aging Cell ; 20(6): e13374, 2021 06.
Article in English | MEDLINE | ID: mdl-33951283

ABSTRACT

Age is a major risk factor for late-onset Alzheimer's disease (AD) but seldom features in laboratory models of the disease. Furthermore, heterogeneity in size and density of AD plaques observed in individuals are not recapitulated in transgenic mouse models, presenting an incomplete picture. We show that the amyloid plaque microenvironment is not equivalent between rodent and primate species, and that differences in the impact of AD pathology on local metabolism and inflammation might explain established differences in neurodegeneration and functional decline. Using brain tissue from transgenic APP/PSEN1 mice, rhesus monkeys with age-related amyloid plaques, and human subjects with confirmed AD, we report altered energetics in the plaque microenvironment. Metabolic features included changes in mitochondrial distribution and enzymatic activity, and changes in redox cofactors NAD(P)H that were shared among species. A greater burden of lipofuscin was detected in the brains from monkeys and humans of advanced age compared to transgenic mice. Local inflammatory signatures indexed by astrogliosis and microglial activation were detected in each species; however, the inflamed zone was considerably larger for monkeys and humans. These data demonstrate the advantage of nonhuman primates in modeling the plaque microenvironment, and provide a new framework to investigate how AD pathology might contribute to functional loss.


Subject(s)
Alzheimer Disease , Animals , Disease Models, Animal , Macaca mulatta
19.
Geroscience ; 43(1): 181-196, 2021 02.
Article in English | MEDLINE | ID: mdl-33595768

ABSTRACT

There is tremendous variation in biological traits, and much of it is not accounted for by variation in DNA sequence, including human diseases and lifespan. Emerging evidence points to differences in the execution of the genetic program as a key source of variation, be it stochastic variation or programmed variation. Here we discuss variation in gene expression as an intrinsic property and how it could contribute to variation in traits, including the rate of aging. The review is divided into sections describing the historical context and evidence to date for nongenetic variation, the different approaches that may be used to detect nongenetic variation, and recent findings showing that the amount of variation in gene expression can be both genetically programmed and epigenetically controlled. Finally, we present evidence that changes in cell-to-cell variation in gene expression emerge as part of the aging process and may be linked to disease vulnerability as a function of age. These emerging concepts are likely to be important across the spectrum of biomedical research and may well underpin what we understand as biological aging.


Subject(s)
Aging , Longevity , Aging/genetics , Gene Expression , Humans , Longevity/genetics , Phenotype
20.
Cell Metab ; 32(3): 323-325, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32877686

ABSTRACT

In this issue of Cell Metabolism, Asadi Shahmirzadi et al. (2020) demonstrate that late-onset dietary supplementation with calcium alpha-ketoglutarate results in increased survival, compressed morbidity, and reduced frailty in mice. The study provides further evidence for critical links between metabolism, inflammation, and aging.


Subject(s)
Ketoglutaric Acids , Longevity , Aging , Animals , Inflammation , Mice , Morbidity
SELECTION OF CITATIONS
SEARCH DETAIL
...