Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 21(10): 2315-24, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25712683

ABSTRACT

PURPOSE: Although novel agents targeting the androgen-androgen receptor (AR) axis have altered the treatment paradigm of metastatic castration-resistant prostate cancer (mCRPC), development of therapeutic resistance is inevitable. In this study, we examined whether AR gene aberrations detectable in circulating cell-free DNA (cfDNA) are associated with resistance to abiraterone acetate and enzalutamide in mCRPC patients. EXPERIMENTAL DESIGN: Plasma was collected from 62 mCRPC patients ceasing abiraterone acetate (n = 29), enzalutamide (n = 19), or other agents (n = 14) due to disease progression. DNA was extracted and subjected to array comparative genomic hybridization (aCGH) for chromosome copy number analysis, and Roche 454 targeted next-generation sequencing of exon 8 in the AR. RESULTS: On aCGH, AR amplification was significantly more common in patients progressing on enzalutamide than on abiraterone or other agents (53% vs. 17% vs. 21%, P = 0.02, χ(2)). Missense AR exon 8 mutations were detected in 11 of 62 patients (18%), including the first reported case of an F876L mutation in an enzalutamide-resistant patient and H874Y and T877A mutations in 7 abiraterone-resistant patients. In patients switched onto enzalutamide after cfDNA collection (n = 39), an AR gene aberration (copy number increase and/or an exon 8 mutation) in pretreatment cfDNA was associated with adverse outcomes, including lower rates of PSA decline ≥ 30% (P = 0.013, χ(2)) and shorter time to radiographic/clinical progression (P = 0.010, Cox proportional hazards regression). CONCLUSIONS: AR gene aberrations in cfDNA are associated with resistance to enzalutamide and abiraterone in mCRPC. Our data illustrate that genomic analysis of cfDNA is a minimally invasive method for interrogating mechanisms of therapeutic resistance in mCRPC.


Subject(s)
Androstenes/pharmacology , Biomarkers, Tumor/blood , DNA, Neoplasm/blood , Prostatic Neoplasms, Castration-Resistant/genetics , Receptors, Androgen/genetics , Taxoids/pharmacology , Aged , Aged, 80 and over , Androstenes/therapeutic use , DNA Copy Number Variations , DNA Mutational Analysis , Disease-Free Survival , Docetaxel , Drug Resistance, Neoplasm , High-Throughput Nucleotide Sequencing , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Mutation, Missense , Neoplasm Metastasis , Neoplastic Cells, Circulating , Proportional Hazards Models , Prostatic Neoplasms, Castration-Resistant/blood , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/mortality , Taxoids/therapeutic use
2.
Antiviral Res ; 83(2): 165-70, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19409931

ABSTRACT

Several viruses associated with upper respiratory diseases have been shown to stimulate the secretion of pro-inflammatory cytokines, including chemokines, sometimes in the absence of viral cytopathology. We evaluated the ability of a standardized preparation of the popular herbal medicine Echinacea (Echinaforce, an ethanol extract of herb and roots of E. purpurea, and containing known concentrations of marker compounds) to inhibit the viral induction of various cytokines in a line of human bronchial epithelial cells (BEAS-2B), and in two other human cell lines. All of the viruses tested, rhinoviruses 1A and 14, influenza virus, respiratory syncytial virus, adenovirus types 3 and 11, and herpes simplex virus type 1, induced substantial secretion of IL-6 and IL-8 (CXCL8), in addition to several other chemokines, depending on the virus, although only viable viruses were able to do this. In every case however Echinacea inhibited this induction. The Echinacea preparation also showed potent virucidal activity against viruses with membranes, indicating the multi-functional potential of the herb. These results support the concept that certain Echinacea preparations can alleviate "cold and flu" symptoms, and possibly other respiratory disorders, by inhibiting viral growth and the secretion of pro-inflammatory cytokines.


Subject(s)
Antiviral Agents/pharmacology , Cytokines/antagonists & inhibitors , Echinacea/chemistry , Immunologic Factors/pharmacology , Plant Extracts/pharmacology , Viruses/immunology , Cell Line , Cytokines/biosynthesis , Epithelial Cells/immunology , Epithelial Cells/virology , Humans , Respiratory Mucosa/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...