Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Epidemics ; 44: 100710, 2023 09.
Article in English | MEDLINE | ID: mdl-37556994

ABSTRACT

The spread of SARS-CoV-2, like that of many other pathogens, is governed by heterogeneity. "Superspreading," or "over-dispersion," is an important factor in transmission, yet it is hard to quantify. Estimates from contact tracing data are prone to potential biases due to the increased likelihood of detecting large clusters of cases, and may reflect variation in contact behavior more than biological heterogeneity. In contrast, the average number of secondary infections per contact is routinely estimated from household surveys, and these studies can minimize biases by testing all members of a household. However, the models used to analyze household transmission data typically assume that infectiousness and susceptibility are the same for all individuals or vary only with predetermined traits such as age. Here we develop and apply a combined forward simulation and inference method to quantify the degree of inter-individual variation in both infectiousness and susceptibility from observations of the distribution of infections in household surveys. First, analyzing simulated data, we show our method can reliably ascertain the presence, type, and amount of these heterogeneities given data from a sufficiently large sample of households. We then analyze a collection of household studies of COVID-19 from diverse settings around the world, and find strong evidence for large heterogeneity in both the infectiousness and susceptibility of individuals. Our results also provide a framework to improve the design of studies to evaluate household interventions in the presence of realistic heterogeneity between individuals.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Contact Tracing/methods , Family Characteristics , Computer Simulation
2.
medRxiv ; 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36523404

ABSTRACT

The spread of SARS-CoV-2, like that of many other pathogens, is governed by heterogeneity. "Superspreading," or "over-dispersion," is an important factor in transmission, yet it is hard to quantify. Estimates from contact tracing data are prone to potential biases due to the increased likelihood of detecting large clusters of cases, and may reflect variation in contact behavior more than biological heterogeneity. In contrast, the average number of secondary infections per contact is routinely estimated from household surveys, and these studies can minimize biases by testing all members of a household. However, the models used to analyze household transmission data typically assume that infectiousness and susceptibility are the same for all individuals or vary only with predetermined traits such as age. Here we develop and apply a combined forward simulation and inference method to quantify the degree of inter-individual variation in both infectiousness and susceptibility from observations of the distribution of infections in household surveys. First, analyzing simulated data, we show our method can reliably ascertain the presence, type, and amount of these heterogeneities with data from a sufficiently large sample of households. We then analyze a collection of household studies of COVID-19 from diverse settings around the world, and find strong evidence for large heterogeneity in both the infectiousness and susceptibility of individuals. Our results also provide a framework to improve the design of studies to evaluate household interventions in the presence of realistic heterogeneity between individuals.

3.
PLoS Comput Biol ; 16(7): e1008010, 2020 07.
Article in English | MEDLINE | ID: mdl-32628660

ABSTRACT

Antibiotic-resistant infections are a growing threat to human health, but basic features of the eco-evolutionary dynamics remain unexplained. Most prominently, there is no clear mechanism for the long-term coexistence of both drug-sensitive and resistant strains at intermediate levels, a ubiquitous pattern seen in surveillance data. Here we show that accounting for structured or spatially-heterogeneous host populations and variability in antibiotic consumption can lead to persistent coexistence over a wide range of treatment coverages, drug efficacies, costs of resistance, and mixing patterns. Moreover, this mechanism can explain other puzzling spatiotemporal features of drug-resistance epidemiology that have received less attention, such as large differences in the prevalence of resistance between geographical regions with similar antibiotic consumption or that neighbor one another. We find that the same amount of antibiotic use can lead to very different levels of resistance depending on how treatment is distributed in a transmission network. We also identify parameter regimes in which population structure alone cannot support coexistence, suggesting the need for other mechanisms to explain the epidemiology of antibiotic resistance. Our analysis identifies key features of host population structure that can be used to assess resistance risk and highlights the need to include spatial or demographic heterogeneity in models to guide resistance management.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Genetics, Population , Streptococcal Infections/microbiology , Algorithms , Evolution, Molecular , Geography , Humans , Models, Theoretical , Prevalence , Regression Analysis , Risk , Spain/epidemiology , Streptococcal Infections/epidemiology , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/genetics
4.
J Am Chem Soc ; 139(1): 43-46, 2017 01 11.
Article in English | MEDLINE | ID: mdl-28005341

ABSTRACT

Polarization transfer is demonstrated as a sensitive technique for the measurement of isotopic fractionation of protonated carbons at natural abundance. This method allows kinetic isotope effects (KIEs) to be determined with substantially less material or shorter acquisition time compared with traditional experiments. Computations quantitatively reproduce the KIEs in a Diels-Alder reaction and a catalytic glycosylation. The glycosylation is shown to occur by an effectively concerted mechanism.


Subject(s)
Carbon Isotopes , Cycloaddition Reaction , Glycosylation , Kinetics , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...