Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Enzymol ; 640: 83-104, 2020.
Article in English | MEDLINE | ID: mdl-32560807

ABSTRACT

Chemiluminescent biosensors have been developed and broadly applied to mammalian cell systems for studying intracellular signaling networks. For bacteria, biosensors have largely relied on fluorescence-based systems for quantitating signaling molecules, but these designs can encounter issues in complex environments due to their reliance on external illumination. In order to circumvent these issues, we designed the first ratiometric chemiluminescent biosensors for studying a key bacterial second messenger, cyclic di-GMP. We have shown recently that these biosensors function both in vitro and in vivo for detecting changes in cyclic di-GMP levels. In this chapter, we present a practical and broadly applicable method for high-throughput quantitation of cyclic di-GMP in bacterial cell extracts using the high affinity biosensor tVYN-TmΔ that could serve as the "Bradford assay" equivalent for this bacterial signaling molecule.


Subject(s)
Biosensing Techniques , Vibrio cholerae , Animals , Bacteria/metabolism , Bacterial Proteins/metabolism , Biofilms , Cyclic GMP , Gene Expression Regulation, Bacterial , Second Messenger Systems , Signal Transduction , Vibrio cholerae/metabolism
2.
ACS Chem Biol ; 15(4): 904-914, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32186367

ABSTRACT

Second messenger signaling networks allow cells to sense and adapt to changing environmental conditions. In bacteria, the nearly ubiquitous second messenger molecule cyclic di-GMP coordinates diverse processes such as motility, biofilm formation, and virulence. In bacterial pathogens, these signaling networks allow the bacteria to survive changing environmental conditions that are experienced during infection of a mammalian host. While studies have examined the effects of cyclic di-GMP levels on virulence in these pathogens, it has not been possible to visualize cyclic di-GMP levels in real time during the stages of host infection. Toward this goal, we generate the first ratiometric, chemiluminescent biosensor scaffold that selectively responds to c-di-GMP. By engineering the biosensor scaffold, a suite of Venus-YcgR-NLuc (VYN) biosensors is generated that provide extremely high sensitivity (KD < 300 pM) and large changes in the bioluminescence resonance energy transfer (BRET) signal (up to 109%). As a proof-of-concept that VYN biosensors can image cyclic di-GMP in tissues, we show that the VYN biosensors function in the context of a tissue phantom model, with only ∼103-104 biosensor-expressing E. coli cells required for the measurement. Furthermore, we utilize the biosensor in vitro to assess changes in cyclic di-GMP in V. cholerae grown with different inputs found in the host environment. The VYN sensors developed here can serve as robust in vitro diagnostic tools for high throughput screening, as well as genetically encodable tools for monitoring the dynamics of c-di-GMP in live cells, and lay the groundwork for live cell imaging of c-di-GMP dynamics in bacteria within tissues and other complex environments.


Subject(s)
Bacterial Proteins/metabolism , Biosensing Techniques/methods , Cyclic GMP/analogs & derivatives , Escherichia coli Proteins/metabolism , Luciferases/metabolism , Luminescent Proteins/metabolism , Signal Transduction/physiology , Bacterial Proteins/genetics , Cyclic GMP/analysis , Cyclic GMP/metabolism , Energy Transfer , Escherichia coli , Escherichia coli Proteins/genetics , Limit of Detection , Luciferases/genetics , Luminescent Agents/chemistry , Luminescent Measurements/methods , Luminescent Proteins/genetics , Proof of Concept Study , Protein Binding , Protein Engineering , Vibrio cholerae
3.
Mol Microbiol ; 113(1): 222-236, 2020 01.
Article in English | MEDLINE | ID: mdl-31665539

ABSTRACT

3',3'-cyclic GMP-AMP (cGAMP) is the third cyclic dinucleotide (CDN) to be discovered in bacteria. No activators of cGAMP signaling have yet been identified, and the signaling pathways for cGAMP have been inferred to display a narrow distribution based upon the characterized synthases, DncV and Hypr GGDEFs. Here, we report that the ubiquitous second messenger cyclic AMP (cAMP) is an activator of the Hypr GGDEF enzyme GacB from Myxococcus xanthus. Furthermore, we show that GacB is inhibited directly by cyclic di-GMP, which provides evidence for cross-regulation between different CDN pathways. Finally, we reveal that the HD-GYP enzyme PmxA is a cGAMP-specific phosphodiesterase (GAP) that promotes resistance to osmotic stress in M. xanthus. A signature amino acid change in PmxA was found to reprogram substrate specificity and was applied to predict the presence of non-canonical HD-GYP phosphodiesterases in many bacterial species, including phyla previously not known to utilize cGAMP signaling.


Subject(s)
Bacterial Proteins/metabolism , Myxococcus xanthus/enzymology , Nucleotides, Cyclic/metabolism , Phosphoric Diester Hydrolases/metabolism
4.
ACS Chem Biol ; 13(7): 1872-1879, 2018 07 20.
Article in English | MEDLINE | ID: mdl-29466657

ABSTRACT

Bacteria colonize highly diverse and complex environments, from gastrointestinal tracts to soil and plant surfaces. This colonization process is controlled in part by the intracellular signal cyclic di-GMP, which regulates bacterial motility and biofilm formation. To interrogate cyclic di-GMP signaling networks, a variety of fluorescent biosensors for live cell imaging of cyclic di-GMP have been developed. However, the need for external illumination precludes the use of these tools for imaging bacteria in their natural environments, including in deep tissues of whole organisms and in samples that are highly autofluorescent or photosensitive. The need for genetic encoding also complicates the analysis of clinical isolates and environmental samples. Toward expanding the study of bacterial signaling to these systems, we have developed the first chemiluminescent biosensors for cyclic di-GMP. The biosensor design combines the complementation of split luciferase (CSL) and bioluminescence resonance energy transfer (BRET) approaches. Furthermore, we developed a lysate-based assay for biosensor activity that enabled reliable high-throughput screening of a phylogenetic library of 92 biosensor variants. The screen identified biosensors with very large signal changes (∼40- and 90-fold) as well as biosensors with high affinities for cyclic di-GMP ( KD < 50 nM). These chemiluminescent biosensors then were applied to measure cyclic di-GMP levels in E. coli. The cellular experiments revealed an unexpected challenge for chemiluminescent imaging in Gram negative bacteria but showed promising application in lysates. Taken together, this work establishes the first chemiluminescent biosensors for studying cyclic di-GMP signaling and provides a foundation for using these biosensors in more complex systems.


Subject(s)
Biosensing Techniques/methods , Cyclic GMP/analogs & derivatives , Amino Acid Sequence , Base Sequence , Cyclic GMP/analysis , Escherichia coli/chemistry , Escherichia coli Proteins/genetics , Fluorescence , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Mutation , Phylogeny , Second Messenger Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...