Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Chaos ; 34(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38277133

ABSTRACT

The interest in induced higher-order relational and multidimensional structures embedded in the financial complex dataset is considered within the applied algebraic topology framework. The aim is to transcend the binary correlations when the interactions of the underlying system are stored in the entries of the cross-correlation matrix. By applying different criteria, we examined aggregations of firms through higher-order clustering of the financial system. The outcome is the extraction of patterns that appear in assemblages of firms due to their multidimensional properties embedded in the cross-correlation matrices. Results are compatible with classifying firms into clusters due to the industry they belong to. Furthermore, the novel and mixed collections of firms are revealed based on the applied mathematical approach. In the broader context, results shed light on the higher-order organization of interactions embedded in the cross-correlation matrix and, as a consequence, extract patterns of collective behavior within a complex system.

2.
Chaos ; 31(12): 123115, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34972312

ABSTRACT

Complex networks display an organization of elements into nontrivial structures at versatile inherent scales, imposing challenges on a more complete understanding of their behavior. The interest of the research presented here is in the characterization of potential mesoscale structures as building blocks of generalized communities in complex networks, with an integrated property that goes beyond the pairwise collections of nodes. For this purpose, a simplicial complex is obtained from a mathematical graph, and indirectly from time series, producing the so-called clique complex from the complex network. As the higher-order organizational structures are naturally embedded in the hierarchical strata of a simplicial complex, the relationships between aggregation of nodes are stored in the higher-order combinatorial Laplacian. Based on the postulate that aggregation of nodes represents integrated configuration of information, the observability parameter is defined for the characterization of potential configurations, computed from the entries of the combinatorial Laplacian matrix. The framework introduced here is used to characterize nontrivial inherent organizational patterns embedded in two real-world complex networks and three complex networks obtained from heart rate time series recordings of three different subject's meditative states.

3.
Entropy (Basel) ; 22(3)2020 Mar 14.
Article in English | MEDLINE | ID: mdl-33286110

ABSTRACT

Functional designs of nanostructured materials seek to exploit the potential of complex morphologies and disorder. In this context, the spin dynamics in disordered antiferromagnetic materials present a significant challenge due to induced geometric frustration. Here we analyse the processes of magnetisation reversal driven by an external field in generalised spin networks with higher-order connectivity and antiferromagnetic defects. Using the model in (Tadic et al. Arxiv:1912.02433), we grow nanonetworks with geometrically constrained self-assemblies of simplexes (cliques) of a given size n, and with probability p each simplex possesses a defect edge affecting its binding, leading to a tree-like pattern of defects. The Ising spins are attached to vertices and have ferromagnetic interactions, while antiferromagnetic couplings apply between pairs of spins along each defect edge. Thus, a defect edge induces n - 2 frustrated triangles per n-clique participating in a larger-scale complex. We determine several topological, entropic, and graph-theoretic measures to characterise the structures of these assemblies. Further, we show how the sizes of simplexes building the aggregates with a given pattern of defects affects the magnetisation curves, the length of the domain walls and the shape of the hysteresis loop. The hysteresis shows a sequence of plateaus of fractional magnetisation and multiscale fluctuations in the passage between them. For fully antiferromagnetic interactions, the loop splits into two parts only in mono-disperse assemblies of cliques consisting of an odd number of vertices n. At the same time, remnant magnetisation occurs when n is even, and in poly-disperse assemblies of cliques in the range n ∈ [ 2 , 10 ] . These results shed light on spin dynamics in complex nanomagnetic assemblies in which geometric frustration arises in the interplay of higher-order connectivity and antiferromagnetic interactions.

4.
Phys Rev E ; 102(3-1): 032307, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33076002

ABSTRACT

Recently, the importance of higher-order interactions in the physics of quantum systems and nanoparticle assemblies has prompted the exploration of new classes of networks that grow through geometrically constrained simplex aggregation. Based on the model of chemically tunable self-assembly of simplexes [Suvakov et al., Sci. Rep. 8, 1987 (2018)2045-232210.1038/s41598-018-20398-x], here we extend the model to allow the presence of a defect edge per simplex. Using a wide distribution of simplex sizes (from edges, triangles, tetrahedrons, etc., up to 10-cliques) and various chemical affinity parameters, we investigate the magnitude of the impact of defects on the self-assembly process and the emerging higher-order networks. Their essential characteristics are treelike patterns of defect bonds, hyperbolic geometry, and simplicial complexes, which are described using the algebraic topology method. Furthermore, we demonstrate how the presence of patterned defects can be used to alter the structure of the assembly after the growth process is complete. In the assemblies grown under different chemical affinities, we consider the removal of defect bonds and analyze the progressive changes in the hierarchical architecture of simplicial complexes and the hyperbolicity parameters of the underlying graphs. Within the framework of cooperative self-assembly of nanonetworks, these results shed light on the use of defects in the design of complex materials. They also provide a different perspective on the understanding of extended connectivity beyond pairwise interactions in many complex systems.

5.
Sci Rep ; 10(1): 17320, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33057130

ABSTRACT

Higher-order connectivity in complex systems described by simplexes of different orders provides a geometry for simplex-based dynamical variables and interactions. Simplicial complexes that constitute a functional geometry of the human connectome can be crucial for the brain complex dynamics. In this context, the best-connected brain areas, designated as hub nodes, play a central role in supporting integrated brain function. Here, we study the structure of simplicial complexes attached to eight global hubs in the female and male connectomes and identify the core networks among the affected brain regions. These eight hubs (Putamen, Caudate, Hippocampus and Thalamus-Proper in the left and right cerebral hemisphere) are the highest-ranking according to their topological dimension, defined as the number of simplexes of all orders in which the node participates. Furthermore, we analyse the weight-dependent heterogeneity of simplexes. We demonstrate changes in the structure of identified core networks and topological entropy when the threshold weight is gradually increased. These results highlight the role of higher-order interactions in human brain networks and provide additional evidence for (dis)similarity between the female and male connectomes.


Subject(s)
Connectome , Nerve Net/anatomy & histology , Caudate Nucleus/anatomy & histology , Cerebral Cortex/anatomy & histology , Female , Hippocampus/anatomy & histology , Humans , Magnetic Resonance Imaging , Male , Neural Pathways , Neuroimaging , Putamen/anatomy & histology , Sex Characteristics , Thalamus/anatomy & histology
6.
Sci Rep ; 9(1): 12060, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31427676

ABSTRACT

Mapping the brain imaging data to networks, where nodes represent anatomical brain regions and edges indicate the occurrence of fiber tracts between them, has enabled an objective graph-theoretic analysis of human connectomes. However, the latent structure on higher-order interactions remains unexplored, where many brain regions act in synergy to perform complex functions. Here we use the simplicial complexes description of human connectome, where the shared simplexes encode higher-order relationships between groups of nodes. We study consensus connectome of 100 female (F-connectome) and of 100 male (M-connectome) subjects that we generated from the Budapest Reference Connectome Server v3.0 based on data from the Human Connectome Project. Our analysis reveals that the functional geometry of the common F&M-connectome coincides with the M-connectome and is characterized by a complex architecture of simplexes to the 14th order, which is built in six anatomical communities, and linked by short cycles. The F-connectome has additional edges that involve different brain regions, thereby increasing the size of simplexes and introducing new cycles. Both connectomes contain characteristic subjacent graphs that make them 3/2-hyperbolic. These results shed new light on the functional architecture of the brain, suggesting that insightful differences among connectomes are hidden in their higher-order connectivity.


Subject(s)
Brain Mapping , Connectome , Models, Theoretical , Neuroimaging , Algorithms , Connectome/methods , Female , Humans , Male , Neural Pathways , Sex Factors
7.
Sci Rep ; 8(1): 1987, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29386561

ABSTRACT

Multilevel self-assembly involving small structured groups of nano-particles provides new routes to development of functional materials with a sophisticated architecture. Apart from the inter-particle forces, the geometrical shapes and compatibility of the building blocks are decisive factors. Therefore, a comprehensive understanding of these processes is essential for the design of assemblies of desired properties. Here, we introduce a computational model for cooperative self-assembly with the simultaneous attachment of structured groups of particles, which can be described by simplexes (connected pairs, triangles, tetrahedrons and higher order cliques) to a growing network. The model incorporates geometric rules that provide suitable nesting spaces for the new group and the chemical affinity of the system to accept excess particles. For varying chemical affinity, we grow different classes of assemblies by binding the cliques of distributed sizes. Furthermore, we characterize the emergent structures by metrics of graph theory and algebraic topology of graphs, and 4-point test for the intrinsic hyperbolicity of the networks. Our results show that higher Q-connectedness of the appearing simplicial complexes can arise due to only geometric factors and that it can be efficiently modulated by changing the chemical potential and the polydispersity of the binding simplexes.

8.
PLoS One ; 11(11): e0166787, 2016.
Article in English | MEDLINE | ID: mdl-27880802

ABSTRACT

Human behaviour in various circumstances mirrors the corresponding brain connectivity patterns, which are suitably represented by functional brain networks. While the objective analysis of these networks by graph theory tools deepened our understanding of brain functions, the multi-brain structures and connections underlying human social behaviour remain largely unexplored. In this study, we analyse the aggregate graph that maps coordination of EEG signals previously recorded during spoken communications in two groups of six listeners and two speakers. Applying an innovative approach based on the algebraic topology of graphs, we analyse higher-order topological complexes consisting of mutually interwoven cliques of a high order to which the identified functional connections organise. Our results reveal that the topological quantifiers provide new suitable measures for differences in the brain activity patterns and inter-brain synchronisation between speakers and listeners. Moreover, the higher topological complexity correlates with the listener's concentration to the story, confirmed by self-rating, and closeness to the speaker's brain activity pattern, which is measured by network-to-network distance. The connectivity structures of the frontal and parietal lobe consistently constitute distinct clusters, which extend across the listener's group. Formally, the topology quantifiers of the multi-brain communities exceed the sum of those of the participating individuals and also reflect the listener's rated attributes of the speaker and the narrated subject. In the broader context, the presented study exposes the relevance of higher topological structures (besides standard graph measures) for characterising functional brain networks under different stimuli.


Subject(s)
Brain/diagnostic imaging , Nerve Net/physiology , Speech/physiology , Adult , Algorithms , Brain Mapping , Electroencephalography , Female , Humans , Image Processing, Computer-Assisted , Male
9.
PLoS One ; 11(5): e0154655, 2016.
Article in English | MEDLINE | ID: mdl-27171149

ABSTRACT

The communication processes of knowledge creation represent a particular class of human dynamics where the expertise of individuals plays a substantial role, thus offering a unique possibility to study the structure of knowledge networks from online data. Here, we use the empirical evidence from questions-and-answers in mathematics to analyse the emergence of the network of knowledge contents (or tags) as the individual experts use them in the process. After removing extra edges from the network-associated graph, we apply the methods of algebraic topology of graphs to examine the structure of higher-order combinatorial spaces in networks for four consecutive time intervals. We find that the ranking distributions of the suitably scaled topological dimensions of nodes fall into a unique curve for all time intervals and filtering levels, suggesting a robust architecture of knowledge networks. Moreover, these networks preserve the logical structure of knowledge within emergent communities of nodes, labeled according to a standard mathematical classification scheme. Further, we investigate the appearance of new contents over time and their innovative combinations, which expand the knowledge network. In each network, we identify an innovation channel as a subgraph of triangles and larger simplices to which new tags attach. Our results show that the increasing topological complexity of the innovation channels contributes to network's architecture over different time periods, and is consistent with temporal correlations of the occurrence of new tags. The methodology applies to a wide class of data with the suitable temporal resolution and clearly identified knowledge-content units.


Subject(s)
Inventions , Knowledge , Humans , Models, Theoretical , Time Factors
10.
Article in English | MEDLINE | ID: mdl-26066222

ABSTRACT

We introduce an approach based on algebraic topological methods that allow an accurate characterization of jamming in dynamical systems with queues. As a prototype system, we analyze the traffic of information packets with navigation and queuing at nodes on a network substrate in distinct dynamical regimes. A temporal sequence of traffic density fluctuations is mapped onto a mathematical graph in which each vertex denotes one dynamical state of the system. The coupling complexity between these states is revealed by classifying agglomerates of high-dimensional cliques that are intermingled at different topological levels and quantified by a set of geometrical and entropy measures. The free-flow, jamming, and congested traffic regimes result in graphs of different structure, while the largest geometrical complexity and minimum entropy mark the edge of the jamming region.

SELECTION OF CITATIONS
SEARCH DETAIL
...