Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(42): 23098-23108, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37749910

ABSTRACT

We herein report the formation of fluorinated N-heterocyclic carbenes (NHCFs) that bear fluorine atoms at the 4- and 5-positions of the imidazol-2-ylidene ring. Treatment of sodium N,N'-bis(aryl)formamidinates with tetrafluoroethylene followed by the addition of LiBF4 induced a [3 + 2] cycloaddition to afford 4,5-difluorinated imidazolium salts, which served as the precursors for 4,5-difluorinated NHCs. A key feature of this procedure is its applicability to other perfluorinated compounds, which enabled us to incorporate polyfluorinated functional groups at 4- and 5-positions on the imidazol-2-ylidene skeleton. Thus, employing octafluorocyclopentene and hexafluorobenzene led to the formation of 4,4,5,5,6,6-hexafluoro-1,3-diaryl-3,4,5,6-tetrahydrocyclopenta[d]imidazolium (CypIPrF·HBF4) and 4,5,6,7-tetrafluoro-1,3-diarylbenzimidazolium (BIPrF·HBF4) salts, respectively. A thorough NMR analysis of these NHCFs, their selenium adducts, and their tricarbonyl nickel complexes, (NHCF)Ni(CO)3, demonstrated that the fluorine substituents, contrary to expectations, tend to act as electron donors owing to the considerable positive mesomeric effect, while the perfluorocyclopentene-fused and tetrafluorobenzo-fused rings are pure electron acceptors due to their strong negative inductive effect. The unique and increased π-accepting character of the perfluorocyclopentene-fused and tetrafluorobenzo-fused NHCFs in both stoichiometric and catalytic reactions is further demonstrated by employing (NHCF)Ni(CO)3 and (NHCF)AuCl species, respectively. Moreover, an analysis of the % buried volume (%Vbur) values clearly suggests that the modification of the NHC backbone with polyfluorinated groups can drastically alter the electronic properties of the NHC ligand without substantially changing its steric properties. Our experimental results were further corroborated by a series of computational calculations.

2.
Mol Pharmacol ; 101(2): 78-86, 2022 02.
Article in English | MEDLINE | ID: mdl-34862308

ABSTRACT

Prohibitin-2 (PHB2) is a scaffold protein that has pleiotropic functions, which include interacting with γ-glutamylcyclotransferase (GGCT) in the cytoplasm and repressing the transcriptional activities of the p21Waf1/Cip (p21) gene in the nucleus. The cytotoxic drug fluorizoline binds to PHB1/2 and exerts antiproliferative actions on cancer cells. However, the precise mechanism underlying the antiproliferative effects of fluorizoline is not fully elucidated. In the present study, we first show that fluorizoline induces p21 expression in several human cancer cell lines, including MCF7 breast cancer cells. Treatment of MCF7 cells with fluorizoline suppressed proliferation and prevented cells from entering into the DNA synthesis phase. Knockdown of p21 rescued the suppressed proliferation, indicating that fluorizoline inhibited MCF7 cell growth via the induction of p21. Overexpression of PHB2 in MCF7 cells prevented the induction of p21 expression by fluorizoline and restored the antiproliferative effects and blockade of cell cycle progression. Moreover, treatment of MCF7 cells with fluorizoline inhibited the interaction between endogenous PHB2 and GGCT proteins and reduced the level of nuclear localization of PHB2 proteins. These results indicate that targeting PHB2 with fluorizoline induces the expression of p21 and consequently blocks proliferation of cancer cells. SIGNIFICANCE STATEMENT: This study shows that fluorizoline may be a promising novel anticancer drug candidate that induces p21 expression and blocks cell-cycle progression in human cancer cell lines. In addition, we show that fluorizoline inhibits the interaction between PHB2 and GGCT and reduces the nuclear localization of PHB2 proteins.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Cyclin-Dependent Kinase Inhibitor p21/biosynthesis , Gene Expression Regulation, Neoplastic/physiology , Prohibitins/metabolism , gamma-Glutamylcyclotransferase/metabolism , Antineoplastic Agents/chemical synthesis , Breast Neoplasms/genetics , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cyclin-Dependent Kinase Inhibitor p21/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells , Prohibitins/antagonists & inhibitors , gamma-Glutamylcyclotransferase/antagonists & inhibitors
3.
Chem Commun (Camb) ; 56(92): 14483-14486, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33150345

ABSTRACT

We develop an optical image tracking technique for the simultaneous observation of a wide area in proximity to the electrode, and study the growth of bubbles during hydrogen gas evolution in alkaline water electrolysis. Using a diffusion model we can successfully extract the concentration profile of dissolved hydrogen gas as a function of distance from the electrode. The obtained concentrations agree well with the values by the electrochemical method.

4.
Opt Lett ; 45(12): 3321-3324, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32538973

ABSTRACT

Understanding the growth dynamics and transport mechanism of nanoparticles/nanobubbles in a solution is an important issue in nanoscience and nanotechnology. Using a standard CMOS camera and a nanosecond laser at 532 nm, we demonstrate the far-field detection of polystyrene nanoparticles in bulk water. Conveniently, the sizes of individual nanoparticles are found to be reliably estimated from the brightness of scattering signals under the single laser pulses. Since the scattering efficiency of polystyrene nanoparticles is similar to that of nanobubbles, our results imply that the detection of nanobubbles in bulk solution is also possible.

5.
Nanoscale ; 12(17): 9640-9646, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32319454

ABSTRACT

To understand the formation mechanism of nanoparticles via laser ablation in liquids direct observation of the dynamics inside the ablation bubble is essential. One powerful technique for this is small-angle X-ray scattering. Applying the laser-scattering technique in a similar context faces some difficulties, because, firstly the probe laser does not easily go into the bubble due to the curved bubble surface, and secondly the extremely weak scattering signal from inside the bubble is overwhelmed by the very strong reflection at the bubble surface. In this paper we solve those two problems by sending the probe laser into the bubble through a laser-induced flat transparent window, and demonstrate the clean observation of laser-scattering signals from the inside of the ablation bubble. We observe the signature of the formation of nanoparticles around the two areas inside the bubble, i.e., around the central area and apex inside the bubble. The scattering signals originating from the centre of the bubble persist throughout the entire growth and shrinkage stages of the bubble, while practically no scattering signals are found outside the bubble and this clearly implies that almost all nanoparticles are formed inside the bubble. Interestingly, the scattering signals originating from the apex inside the bubble gradually emerge after the bubble reaches the maximum size, and they become brighter as it further shrinks. Those findings are consistent with the scenario of nanoparticle formation obtained by small-angle X-ray scattering experiments.

6.
J Phys Condens Matter ; 31(13): 134003, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30641497

ABSTRACT

Small barium-oxide clusters [Formula: see text] are studied by mass spectrometry and x-ray absorption spectroscopy (XAS) to discuss stability of the clusters and oxidation state of constituent atoms. It is found that clusters with bulk composition, n = m, are stable, which can accommodate one or two excess oxygen atoms additionally as manifested by n = m + 1 and m + 2 species in the mass spectrum. XAS spectra of [Formula: see text] and [Formula: see text] reveal that the oxidation state of barium atoms stays at +2 (the bulk BaO value) even after binding excess oxygen, whereas spectral features originating from oxygen exhibit composition dependence. The present finding suggests that stoichiometric small barium-oxide clusters bind less-negatively-charged oxygen atoms without change in the charge state of barium.

7.
Phys Chem Chem Phys ; 20(45): 28435-28444, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30406234

ABSTRACT

Freezing processes are reported for pure-water droplets generated in a vacuum in the size range of 49-71 µm in diameter. The process is characterized for each size by measurement of a freezing curve, where the fraction of frozen droplets is evaluated as a function of time. The 49 µm droplet was found to freeze at a time between 7.0 and 7.9 ms after being generated at room temperature, where the fraction of frozen droplets increased from 5% to 95%; the freezing time was thus distributed statistically within 1 ms. The freezing time was retarded by about 3 ms as the size increases from 49 to 71 µm, while the rise time of the freezing curve was almost unchanged. Numerical simulation of a cooling curve, i.e., the temperature of a droplet as a function of time, revealed that the droplets in the present size range are frozen at almost the same temperature between 233 and 236 K. The freezing curves measured in the experiment were well reproduced by numerical simulation based on the simulated cooling curves combined with the temperature dependence of the volume-based homogeneous ice nucleation rates of pure water reported previously. It was also found that a droplet is disintegrated into a few fragments upon freezing, which suggests formation of a frozen shell in the outer region of a droplet.

8.
Phys Chem Chem Phys ; 20(20): 13974-13982, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29744493

ABSTRACT

Reactions of the free tantalum cation, Ta+, and tantalum cluster cations, Tan+ (n = 2-10), with ammonia are presented. The reaction of the monomer cation, Ta+, with two molecules of NH3 leads to the formation of TaN2H2+ along with release of two H2 molecules. The dehydrogenation occurs until the formal oxidation number of the tantalum atom reaches +5. On the other hand, all the tantalum cluster cations, Tan+, react with two molecules of NH3 and form TanN2+ with the release of three H2 molecules. Further exposure to ammonia showed that TanNmH+ and TanNm+ are produced through successive reactions; a pure nitride and three H2 molecules are formed for every other NH3 molecule. The nitridation occurred until the formal oxidation number of the tantalum atoms reaches +5 as in the case of TaN2H2+ in contrast to other group 5 elements, i.e., vanadium and niobium, which have been reported to produce nitrides with lower oxidation states. The present results on small gas-phase metal-nitride clusters show correlation with their bulk properties: tantalum is known to form bulk nitrides in the oxidation states of either +5 (Ta3N5) or +3 (TaN), whereas vanadium and niobium form nitrides in the oxidation state of +3 (VN and NbN). Along with DFT calculations, these findings reveal that nitridation is driven by the electron-donating ability of group 5 elements, i.e., electronegativity of the metal plays a key role in determining the composition of the metal nitrides.

9.
Chemistry ; 24(39): 9794-9798, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29768680

ABSTRACT

The Cu(I)-catalyzed pentafluoroethylation of iodoarenes via the fluorocupration of tetrafluoroethylene (TFE) is disclosed. The active species, (phen)CuC2 F5 , was isolated and its molecular structure confirmed by a single-crystal X-ray diffraction analysis. The key to the successful suppression of the competing oligomerization of TFE is to refrain from stirring the reaction mixture. A mechanistic study clearly discarded the possibility that the catalytic reaction proceeds via a radical pathway.

10.
Water Res ; 122: 139-147, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28599159

ABSTRACT

Leptothrix species, aquatic Fe-oxidizing bacteria, excrete nano-scaled exopolymer fibrils. Once excreted, the fibrils weave together and coalesce to form extracellular, microtubular, immature sheaths encasing catenulate cells of Leptothrix. The immature sheaths, composed of aggregated nanofibrils with a homogeneous-looking matrix, attract and bind aqueous-phase inorganics, especially Fe, P, and Si, to form seemingly solid, mature sheaths of a hybrid organic-inorganic nature. To verify our assumption that the organic skeleton of the sheaths might sorb a broad range of other metallic and nonmetallic elements, we examined the sorption potential of chemically and enzymatically prepared protein-free organic sheath remnants for 47 available elements. The sheath remnants were found by XRF to sorb each of the 47 elements, although their sorption degree varied among the elements: >35% atomic percentages for Ti, Y, Zr, Ru, Rh, Ag, and Au. Electron microscopy, energy dispersive x-ray spectroscopy, electron and x-ray diffractions, and Fourier transform infrared spectroscopy analyses of sheath remnants that had sorbed Ag, Cu, and Pt revealed that (i) the sheath remnants comprised a 5-10 nm thick aggregation of fibrils, (ii) the test elements were distributed almost homogeneously throughout the fibrillar aggregate, (iii) the nanofibril matrix sorbing the elements was nearly amorphous, and (iv) these elements plausibly were bound to the matrix by ionic binding, especially via OH. The present results show that the constitutive protein-free exopolymer nanofibrils of the sheaths can contribute to creating novel filtering materials for recovering and recycling useful and/or hazardous elements from the environment.


Subject(s)
Leptothrix , Metals , Iron , Spectrometry, X-Ray Emission , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...