Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 13(586)2021 03 24.
Article in English | MEDLINE | ID: mdl-33762439

ABSTRACT

Staphylococcus aureus (SA) bloodstream infections cause high morbidity and mortality (20 to 30%) despite modern supportive care. In a human bacteremia cohort, we found that development of thrombocytopenia was correlated to increased mortality and increased α-toxin expression by the pathogen. Platelet-derived antibacterial peptides are important in bloodstream defense against SA, but α-toxin decreased platelet viability, induced platelet sialidase to cause desialylation of platelet glycoproteins, and accelerated platelet clearance by the hepatic Ashwell-Morell receptor (AMR). Ticagrelor (Brilinta), a commonly prescribed P2Y12 receptor inhibitor used after myocardial infarction, blocked α-toxin-mediated platelet injury and resulting thrombocytopenia, thereby providing protection from lethal SA infection in a murine intravenous challenge model. Genetic deletion or pharmacological inhibition of AMR stabilized platelet counts and enhanced resistance to SA infection, and the anti-influenza sialidase inhibitor oseltamivir (Tamiflu) provided similar therapeutic benefit. Thus, a "toxin-platelet-AMR" regulatory pathway plays a critical role in the pathogenesis of SA bloodstream infection, and its elucidation provides proof of concept for repurposing two commonly prescribed drugs as adjunctive therapies to improve patient outcomes.


Subject(s)
Bacteremia , Pharmaceutical Preparations , Staphylococcal Infections , Animals , Bacteremia/drug therapy , Blood Platelets , Humans , Mice , Staphylococcal Infections/drug therapy , Staphylococcus aureus
2.
Proc Natl Acad Sci U S A ; 116(15): 7465-7470, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30910970

ABSTRACT

Circulating platelets have important functions in thrombosis and in modulating immune and inflammatory responses. However, the role of platelets in innate immunity to bacterial infection is largely unexplored. While human platelets rapidly kill Staphylococcus aureus, we found the neonatal pathogen group B Streptococcus (GBS) to be remarkably resistant to platelet killing. GBS possesses a capsule polysaccharide (CPS) with terminal α2,3-linked sialic acid (Sia) residues that mimic a common epitope present on the human cell surface glycocalyx. A GBS mutant deficient in CPS Sia was more efficiently killed by human platelets, thrombin-activated platelet releasate, and synthetic platelet-associated antimicrobial peptides. GBS Sia is known to bind inhibitory Sia-recognizing Ig superfamily lectins (Siglecs) to block neutrophil and macrophage activation. We show that human platelets also express high levels of inhibitory Siglec-9 on their surface, and that GBS can engage this receptor in a Sia-dependent manner to suppress platelet activation. In a mouse i.v. infection model, antibody-mediated platelet depletion increased susceptibility to platelet-sensitive S. aureus but did not alter susceptibility to platelet-resistant GBS. Elimination of murine inhibitory Siglec-E partially reversed platelet suppression in response to GBS infection. We conclude that GBS Sia has dual roles in counteracting platelet antimicrobial immunity: conferring intrinsic resistance to platelet-derived antimicrobial components and inhibiting platelet activation through engagement of inhibitory Siglecs. We report a bacterial virulence factor for evasion of platelet-mediated innate immunity.


Subject(s)
Bacterial Capsules/metabolism , Blood Platelets/metabolism , N-Acetylneuraminic Acid/metabolism , Platelet Activation , Streptococcal Infections/metabolism , Streptococcus agalactiae , Virulence Factors/metabolism , Adult , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, B-Lymphocyte/genetics , Antigens, Differentiation, B-Lymphocyte/metabolism , Blood Bactericidal Activity , Blood Platelets/pathology , Female , Glycocalyx/metabolism , Glycocalyx/pathology , Humans , Male , Mice , Mice, Knockout , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Streptococcal Infections/pathology , Streptococcus agalactiae/metabolism , Streptococcus agalactiae/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...