Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 23(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36679442

ABSTRACT

A magnetocardiograph that enables the clear observation of heart magnetic field mappings without magnetically shielded rooms at room temperatures has been successfully manufactured. Compared to widespread electrocardiographs, magnetocardiographs commonly have a higher spatial resolution, which is expected to lead to early diagnoses of ischemic heart disease and high diagnostic accuracy of ventricular arrhythmia, which involves the risk of sudden death. However, as the conventional superconducting quantum interference device (SQUID) magnetocardiographs require large magnetically shielded rooms and huge running costs to cool the SQUID sensors, magnetocardiography is still unfamiliar technology. Here, in order to achieve the heart field detectivity of 1.0 pT without magnetically shielded rooms and enough magnetocardiography accuracy, we aimed to improve the detectivity of tunneling magnetoresistance (TMR) sensors and to decrease the environmental and sensor noises with a mathematical algorithm. The magnetic detectivity of the TMR sensors was confirmed to be 14.1 pTrms on average in the frequency band between 0.2 and 100 Hz in uncooled states, thanks to the original multilayer structure and the innovative pattern of free layers. By constructing a sensor array using 288 TMR sensors and applying the mathematical magnetic shield technology of signal space separation (SSS), we confirmed that SSS reduces the environmental magnetic noise by -73 dB, which overtakes the general triple magnetically shielded rooms. Moreover, applying digital processing that combined the signal average of heart magnetic fields for one minute and the projection operation, we succeeded in reducing the sensor noise by about -23 dB. The heart magnetic field resolution measured on a subject in a laboratory in an office building was 0.99 pTrms and obtained magnetocardiograms and current arrow maps as clear as the SQUID magnetocardiograph does in the QRS and ST segments. Upon utilizing its superior spatial resolution, this magnetocardiograph has the potential to be an important tool for the early diagnosis of ischemic heart disease and the risk management of sudden death triggered by ventricular arrhythmia.


Subject(s)
Magnetocardiography , Myocardial Ischemia , Humans , Heart , Arrhythmias, Cardiac/diagnosis , Death, Sudden
2.
Sci Rep ; 12(1): 6106, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35414691

ABSTRACT

Non-invasive human brain functional imaging with millisecond resolution can be achieved only with magnetoencephalography (MEG) and electroencephalography (EEG). MEG has better spatial resolution than EEG because signal distortion due to inhomogeneous head conductivity is negligible in MEG but serious in EEG. However, this advantage has been practically limited by the necessary setback distances between the sensors and scalp, because the Dewar vessel containing liquid helium for superconducting quantum interference devices (SQUIDs) requires a thick vacuum wall. Latest developments of high critical temperature (high-Tc) SQUIDs or optically pumped magnetometers have allowed closer placement of MEG sensors to the scalp. Here we introduce the use of tunnel magneto-resistive (TMR) sensors for scalp-attached MEG. Improvement of TMR sensitivity with magnetic flux concentrators enabled scalp-tangential MEG at 2.6 mm above the scalp, to target the largest signal component produced by the neural current below. In a healthy subject, our single-channel TMR-MEG system clearly demonstrated the N20m, the initial cortical component of the somatosensory evoked response after median nerve stimulation. Multisite measurement confirmed a spatially and temporally steep peak of N20m, immediately above the source at a latency around 20 ms, indicating a new approach to non-invasive functional brain imaging with millimeter and millisecond resolutions.


Subject(s)
Magnetoencephalography , Scalp , Brain/physiology , Brain Mapping/methods , Electroencephalography , Humans , Magnetoencephalography/methods
3.
Sensors (Basel) ; 21(2)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33477948

ABSTRACT

Thanks to high sensitivity, excellent scalability, and low power consumption, magnetic tunnel junction (MTJ)-based tunnel magnetoresistance (TMR) sensors have been widely implemented in various industrial fields. In nondestructive magnetic flux leakage testing, the magnetic sensor plays a significant role in the detection results. As highly sensitive sensors, integrated MTJs can suppress frequency-dependent noise and thereby decrease detectivity; therefore, serial MTJ-based sensors allow for the design of high-performance sensors to measure variations in magnetic fields. In the present work, we fabricated serial MTJ-based TMR sensors and connected them to a full Wheatstone bridge circuit. Because noise power can be suppressed by using bridge configuration, the TMR sensor with Wheatstone bridge configuration showed low noise spectral density (0.19 µV/Hz0.5) and excellent detectivity (5.29 × 10-8 Oe/Hz0.5) at a frequency of 1 Hz. Furthermore, in magnetic flux leakage testing, compared with one TMR sensor, the Wheatstone bridge TMR sensors provided a higher signal-to-noise ratio for inspection of a steel bar. The one TMR sensor system could provide a high defect signal due to its high sensitivity at low lift-off (4 cm). However, as a result of its excellent detectivity, the full Wheatstone bridge-based TMR sensor detected the defect even at high lift-off (20 cm). This suggests that the developed TMR sensor provides excellent detectivity, detecting weak field changes in magnetic flux leakage testing.

4.
Sensors (Basel) ; 20(19)2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33036470

ABSTRACT

Thanks to their high magnetoresistance and integration capability, magnetic tunnel junction-based magnetoresistive sensors are widely utilized to detect weak, low-frequency magnetic fields in a variety of applications. The low detectivity of MTJs is necessary to obtain a high signal-to-noise ratio when detecting small variations in magnetic fields. We fabricated serial MTJ-based sensors with various junction area and free-layer electrode aspect ratios. Our investigation showed that their sensitivity and noise power are affected by the MTJ geometry due to the variation in the magnetic shape anisotropy. Their MR curves demonstrated a decrease in sensitivity with an increase in the aspect ratio of the free-layer electrode, and their noise properties showed that MTJs with larger junction areas exhibit lower noise spectral density in the low-frequency region. All of the sensors were able detect a small AC magnetic field (Hrms = 0.3 Oe at 23 Hz). Among the MTJ sensors we examined, the sensor with a square-free layer and large junction area exhibited a high signal-to-noise ratio (4792 ± 646). These results suggest that MTJ geometrical characteristics play a critical role in enhancing the detectivity of MTJ-based sensors.

5.
Sci Rep ; 9(1): 17018, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31745142

ABSTRACT

We studied the effect of second-order magnetic anisotropy on the linear conductance output of magnetic tunnel junctions (MTJs) for magnetic-field-sensor applications. Experimentally, CoFeB/MgO/CoFeB-based MTJs were fabricated, and the nonlinearity, NL was evaluated for different thicknesses, t of the CoFeB free layer from the conductance. As increasing t from 1.5 to 2.0 nm, maximum NL, NLmax was found to decrease from 1.86 to 0.17% within the dynamic range, Hd = 1.0 kOe. For understanding the origin of such NL behavior, a theoretical model based on the Slonczewski model was constructed, wherein the NL was demonstrated to be dependent on both the normalized second-order magnetic anisotropy field of Hk2/|Hkeff| and the normalized dynamic range of Hd/|Hkeff|. Here, Hkeff, Hk2, are the effective and second-order magnetic anisotropy field of the free layer in MTJ. Remarkably, experimental NLmax plotted as a function of Hk2/|Hkeff| and Hd/|Hkeff|, which were measured from FMR technique coincided with the predictions of our model. Based on these experiment and calculation, we conclude that Hk2 is the origin of NL and strongly influences its magnitude. This finding gives us a guideline for understanding NL and pioneers a new prospective for linear-output MTJ sensors to control sensing properties by Hk2.

6.
Sensors (Basel) ; 19(21)2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31671677

ABSTRACT

Magnetic flux leakage (MFL) testing is a method of non-destructive testing (NDT), whereby the material is magnetized, and when a defect is present, the magnetic flux lines break out of the material. The magnitude of the leaked magnetic flux decreases as the lift-off (distance from the material) increases. Therefore, for detection at high lift-off, a sensitive magnetic sensor is required. To increase the output sensitivity, this paper proposes the application of magnetic tunnel junction (MTJ) sensors in a bridge circuit for the NDT of reinforced concrete at high lift-off. MTJ sensors were connected to a full-bridge circuit, where one side of the arm has two MTJ sensors connected in series, and the other contains a resistor and a variable resistor. Their responses towards a bias magnetic field were measured, and, based on the results, the sensor circuit sensitivity was 0.135 mV/mT. Finally, a reinforced concrete specimen with a 1 cm gap in the center was detected. The sensor module (with an amplifier and low pass filter circuits) could determine the gap even at 50 cm, suggesting that MTJ sensors have the potential to detect defects at high lift-off values and have a promising future in the field of NDT.

7.
Nanoscale Res Lett ; 11(1): 33, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26787052

ABSTRACT

The effects of Nd2Fe14B grain size and Nd coating on the coercivity in sputter-deposited Nd-Fe-B/Nd thin films have been investigated in order to gain an insight into the coercivity mechanism of Nd-Fe-B magnets. Highly textured Nd2Fe14B particles were grown successfully on the MgO(100) single-crystal substrate with the Mo underlayer. As the Nd-Fe-B layer thickness t NFB was decreased from 70 to 5 nm, the coercivity H c increased gradually from 6.5 to 16 kOe. By depositing the Nd overlayer onto these films and post-annealing at 500 °C, the H c value further increased from 17.5 kOe (t NFB=70 nm) to 26.2 kOe (t NFB=5 nm). The amount of H c increase by the combination of the Nd coating and post-annealing was about 10 kOe irrespective of the t NFB value. These results therefore suggest an independence of size and interface effects on the coercivity of Nd-Fe-B magnets.

8.
Plant Sci ; 233: 155-164, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25711823

ABSTRACT

Nitrification, the biological oxidation of ammonium to nitrate, weakens the soil's ability to retain N and facilitates N-losses from production agriculture through nitrate-leaching and denitrification. This process has a profound influence on what form of mineral-N is absorbed, used by plants, and retained in the soil, or lost to the environment, which in turn affects N-cycling, N-use efficiency (NUE) and ecosystem health and services. As reactive-N is often the most limiting in natural ecosystems, plants have acquired a range of mechanisms that suppress soil-nitrifier activity to limit N-losses via N-leaching and denitrification. Plants' ability to produce and release nitrification inhibitors from roots and suppress soil-nitrifier activity is termed 'biological nitrification inhibition' (BNI). With recent developments in methodology for in-situ measurement of nitrification inhibition, it is now possible to characterize BNI function in plants. This review assesses the current status of our understanding of the production and release of biological nitrification inhibitors (BNIs) and their potential in improving NUE in agriculture. A suite of genetic, soil and environmental factors regulate BNI activity in plants. BNI-function can be genetically exploited to improve the BNI-capacity of major food- and feed-crops to develop next-generation production systems with reduced nitrification and N2O emission rates to benefit both agriculture and the environment. The feasibility of such an approach is discussed based on the progresses made.


Subject(s)
Nitrification , Nitrogen/metabolism , Plants/metabolism , Soil/chemistry , Agriculture , Nitrous Oxide/metabolism , Plants/genetics
9.
Sci Rep ; 5: 8537, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25702631

ABSTRACT

Ultraviolet photoemission spectroscopy (UPS) is a powerful tool to study the electronic spin and symmetry features at both surfaces and interfaces to ultrathin top layers. However, the very low mean free path of the photoelectrons usually prevents a direct access to the properties of buried interfaces. The latter are of particular interest since they crucially influence the performance of spintronic devices like magnetic tunnel junctions (MTJs). Here, we introduce spin-resolved extremely low energy photoemission spectroscopy (ELEPS) to provide a powerful way for overcoming this limitation. We apply ELEPS to the interface formed between the half-metallic Heusler compound Co2MnSi and the insulator MgO, prepared as in state-of-the-art Co2MnSi/MgO-based MTJs. The high accordance between the spintronic fingerprint of the free Co2MnSi surface and the Co2MnSi/MgO interface buried below up to 4 nm MgO provides clear evidence for the high interface sensitivity of ELEPS to buried interfaces. Although the absolute values of the interface spin polarization are well below 100%, the now accessible spin- and symmetry-resolved wave functions are in line with the predicted existence of non-collinear spin moments at the Co2MnSi/MgO interface, one of the mechanisms evoked to explain the controversially discussed performance loss of Heusler-based MTJs at room temperature.

10.
Materials (Basel) ; 8(9): 6531-6542, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-28793580

ABSTRACT

Synthetic perpendicular magnetic anisotropy (PMA) ferrimagnets consisting of 30-nm-thick D022-MnGa and Co2MnSi (CMS) cubic Heusler alloys with different thicknesses of 1, 3, 5, 10 and 20 nm, buffered and capped with a Cr film, are successfully grown epitaxially on MgO substrate. Two series samples with and without post annealing at 400 °C are fabricated. The (002) peak of the cubic L21 structure of CMS films on the MnGa layer is observed, even for the 3-nm-thick CMS film for both un-annealed and annealed samples. The smaller remnant magnetization and larger switching field values of CMS (1-20 nm)/MnGa (30 nm) bilayers compared with 30-nm-thick MnGa indicates antiferromagnetic (AFM) interfacial exchange coupling (Jex) between MnGa and CMS films for both un-annealed and annealed samples. The critical thickness of the CMS film for observing PMA with AFM coupling in the CMS/MnGa bilayer is less than 10 nm, which is relatively large compared to previous studies.

11.
Nano Lett ; 15(1): 623-8, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25549140

ABSTRACT

Spin dynamics excited by spin-polarized current in magnetic tunnel junctions (MTJs) is potentially useful in nanoscale electrical oscillation sources and detection devices. A spin oscillator/detector should work at a high frequency, such as that of a millimeter-wave, where the quality of a semiconductor device is restricted by carrier mobility, the CR time constant, and so on. Developers of spin systems for practical use need to find out how to excite spin dynamics (i) in the millimeter-wave region, (ii) with low power consumption (ex: no external magnetic field, low damping material), and (iii) for broad frequency modulation. Here L10-ordered FePd alloy with perpendicular magnetocrystalline anisotropy (PMA) and a low damping constant, 0.007, was used for the free layer in the MTJs, and a homodyne-detected ferromagnetic resonance (FMR) signal was obtained at around 30 GHz together with the possibility of one-octave frequency modulation. The FMR signal in out-of-plane magnetized L10-ordered FePd free layer could be excited without an external magnetic field by injecting in-plane spin polarized alternating current. This study shows the potential utility of L10-ordered alloy materials such as FePt, CoPt, MnAl, and MnGa in a variety of millimeter-wave spin devices.

12.
Nat Commun ; 4: 1392, 2013.
Article in English | MEDLINE | ID: mdl-23340432

ABSTRACT

The integration of organic semiconductors and magnetism has been a fascinating topic for fundamental scientific research and future applications in electronics, because organic semiconductors are expected to possess a large spin-dependent transport length based on weak spin-orbit coupling and weak hyperfine interaction. However, to date, this length has typically been limited to several nanometres at room temperature, and a large length has only been observed at low temperatures. Here we report on a novel organic spin valve device using C(60) as the spacer layer. A magnetoresistance ratio of over 5% was observed at room temperature, which is one of the highest magnetoresistance ratios ever reported. Most importantly, a large spin-dependent transport length of approximately 110 nm was experimentally observed for the C(60) layer at room temperature. These results provide insights for further understanding spin transport in organic semiconductors and may strongly advance the development of spin-based organic devices.

13.
Materials (Basel) ; 4(6): 1087-1095, 2011 Jun 09.
Article in English | MEDLINE | ID: mdl-28879967

ABSTRACT

The 10 at.% Co-substituted BiFeO3 films (of thickness 50 nm) were successfully prepared by radio frequency (r.f.) magnetron sputtering on SrTiO3 (100) substrates with epitaxial relationships of [001](001)Co-BiFeO3//[001](001)SrTiO3. In this study, a single phase Co-substituted BiFeO3 epitaxial film was fabricated by r.f. magnetron sputtering. Sputtering conditions such as Ar, O2 gas pressure, annealing temperature, annealing atmosphere, and sputtering power were systematically changed. It was observed that a low Ar gas pressure and low sputtering power is necessary to suppress the formation of the secondary phases of BiOx. The Co-substituted BiFeO3 films were crystalized with post-annealing at 600 °C in air. The process window for single phase films is narrower than that for pure BiFeO3 epitaxial films. By substituting Fe with Co in BiFeO3, the magnetization at room temperature increased to 20 emu/cm³. This result suggests that Co-substituted BiFeO3 films can be used in spin-filter devices.

14.
Rev Sci Instrum ; 81(2): 026105, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20192522

ABSTRACT

In this Note, we present a dual-beam magneto-optical Kerr effect (MOKE) magnetometer for the study of quadratic MOKE in magnetic thin films. The two beams simultaneously probe the sample, located in the middle of a quadrupole magnet, at two angles of incidence (0 degrees and 45 degrees). This combination of two systems allows one to automatically and routinely perform measurements that are sensitive to the combined longitudinal and quadratic MOKE signals (45 degrees), or the quadratic effect alone (0 degrees). Orientation-dependent and automated quantitative analyses of the quadratic effect's amplitude are also implemented. We present representative measurements on Heusler compound thin films to illustrate the newly combined capabilities of this instrument.

15.
Phys Rev Lett ; 105(21): 217202, 2010 Nov 19.
Article in English | MEDLINE | ID: mdl-21231346

ABSTRACT

We investigate the ultrafast demagnetization for two Heusler alloys (Co2Mn(1-x)FexSi) with a different lineup of the minority band gap and the Fermi level. Even though electronic spin-flip transitions are partially blocked by the band gap in one compound, the respective magnetization dynamics, as measured by the time-resolved Kerr effect, are remarkably similar. Based on a dynamical model that includes momentum and spin-dependent carrier scattering, we show that the magnetization dynamics are dominated by hole spin-flip processes, which are not influenced by the gap.

SELECTION OF CITATIONS
SEARCH DETAIL
...