Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mar Environ Res ; 189: 106073, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37413952

ABSTRACT

Halophila stipulacea is a tropical seagrass species, native to the Red Sea, Persian Gulf, and Indian Ocean, while invasive to the Mediterranean and Caribbean Seas. The benthic fauna assemblages associated with H. stipulacea in its native habitats and the potential effects of anthropogenic stressors on these assemblages remain unknown. We compared meadow characteristics, associated fauna assemblages and trophic niche structures of H. stipulacea from an impacted and a pristine site in the northern Red Sea. Seagrass cover and biomass were higher in the impacted site, however, the associated fauna community was more abundant and diverse in the pristine site. Both meadows showed comparable trophic niches based on stable isotope analysis. This study provides first insights into the macrozoobenthos associated with H. stipulacea in its native habitat and highlights the importance of better understanding the relationship between seagrasses and their associated biota and the potential effects of urbanization on this relationship.


Subject(s)
Anthropogenic Effects , Ecosystem , Biota , Biomass , Caribbean Region
2.
Environ Pollut ; 328: 121632, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37059168

ABSTRACT

Plastic pollution has been extensively documented in the marine food web, but targeted studies focusing on the relationship between microplastic ingestion and fish trophic niches are still limited. In this study we investigated the frequency of occurrence and the abundance of micro- and mesoplastics (MMPs) in eight fish species with different feeding habits from the western Mediterranean Sea. Stable isotope analysis (δ13C and δ15N) was used to describe the trophic niche and its metrics for each species. A total of 139 plastic items were found in 98 out of the 396 fish analysed (25%). The bogue revealed the highest occurrence with 37% of individuals with MMPs in their gastrointestinal tract, followed by the European sardine (35%). We highlighted how some of the assessed trophic niche metrics seem to influence MMPs occurrence. Fish species with a wider isotopic niche and higher trophic diversity were more probable to ingest plastic particles in pelagic, benthopelagic and demersal habitats. Additionally, fish trophic habits, habitat and body condition influenced the abundance of ingested MMPs. A higher number of MMPs per individual was found in zooplanktivorous than in benthivore and piscivorous species. Similarly, our results show a higher plastic particles ingestion per individual in benthopelagic and pelagic species than in demersal species, which also resulted in lower body condition. Altogether, these results suggest that feeding habits and trophic niche descriptors can play a significant role in the ingestion of plastic particles in fish species.


Subject(s)
Environmental Monitoring , Fishes , Microplastics , Water Pollutants, Chemical , Animals , Eating , Mediterranean Sea , Plastics , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
3.
J Environ Manage ; 318: 115511, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35759963

ABSTRACT

Stable isotope ratios, carbon (δ13C) and nitrogen (δ15N), and fatty acids validated the trophic connection between farmed fish in a commercial nearshore fish farm and sea cucumbers in the Mediterranean Sea. This dual tracer approach evaluated organic matter transfer in integrated multi-trophic aquaculture (IMTA) and the ability of sea cucumbers to incorporate fish farm waste (fish faeces and uneaten artificial fish feed) into their tissue. Between October 2018 and September 2019, Holothuria (Roweothuria) poli Delle Chiaje, 1824, co-cultured at IMTA sites directly below one of the commercial fish cage , at 10 m and 25 m from the selected fish cage, and at two reference sites over 800 m from the fish farm. Sea cucumbers were sampled from each site in February, May and September, except at 0 m due to mass mortalities recorded here in the first month of study. Isotopic mixing models revealed that fish farm organic waste was the dominant dietary source for H. poli in IMTA at 10 m and 25 m from the cage. The contribution of marine plant-derived organic matter, Posidonia oceanica leaves and rhizomes, was least important. The isotopic signatures of sea cucumber tissues at reference sites were not explained by the sampled food resources. Importantly, fatty acid profiling revealed a high abundance of individual terrestrial plant fatty acids, such as oleic (18:1n-9), linoleic (18:2n-6) and eicosenoic (20:1n-9) acids in sea cucumber tissue at 10 m and 25 m from the fish cage, presumably linked to the terrestrial plant oil content of the fish feeds. At the reference sites, sea cucumber tissues were characterised by higher relative abundance of arachidonic acid (20:4n-6) acid, and the natural marine-based eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids. These analyses revealed important differences in the composition of H. poli between the IMTA and reference locations, driven by aquaculture-derived waste near fish cages. Moreover, this study revealed temporal variation in food availability and quality, and possible differences in the physiological responses of H. poli. Stable isotope analysis and fatty acid profiling provided complementary evidence for the important dietary preferences of H. poli and validated the potential of sea cucumbers to uptake aquaculture organic waste as part of inshore fish-sea cucumber IMTA. It reveals the important implications that an established trophic link has on the viability of using sea cucumbers for the development of IMTA and the sustainable expansion of aquaculture.


Subject(s)
Fisheries , Sea Cucumbers , Animals , Aquaculture , Fatty Acids , Fishes , Isotopes
4.
Mar Pollut Bull ; 159: 111504, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32758796

ABSTRACT

Mediterranean Sea is among the world's leading tourist destinations; however, the sharp increase in tourists during the high season may affect coastal seawater. The main aim of this study was to evaluate the occurrence and temporal variation of anthropogenic nutrients in coastal seawater in relation to tourist flows in three Mediterranean islands (Cyprus, Sicily and Rhodes), through short-term macroalgae deployments, coupled with δ15N analysis and GIS mapping. In all islands, an overall increase in macroalgae δ15N occurred over the deployment carried out in August in the tourist sites, suggesting the presence of anthropogenic nutrients. Decreasing δ15N values occurred at increasing distance from the coastline in two out of the three islands (Cyprus and Sicily). This study revealed the usefulness of the approach used in the assessment of tourism impact in terms of trophic enrichment and its potential to support competent authorities for the development of sustainable coastal management plans.


Subject(s)
Environmental Monitoring , Seaweed , Cyprus , Mediterranean Islands , Mediterranean Sea , Nutrients , Sicily
5.
Sci Rep ; 10(1): 11011, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32620846

ABSTRACT

Elasmobranchs are among the species most threatened by overfishing and a large body of evidence reports their decline around the world. As they are large predators occupying the highest levels of marine food webs, their removal can alter the trophic web dynamic through predatory release effects and trophic cascade. Suitable management of threatened shark species requires a good understanding of their behaviour and feeding ecology. In this study we provide one of the first assessments of the trophic ecology of the "vulnerable" smooth-hounds Mustelus mustelus and M. punctulatus in the Central Mediterranean Sea, based on stomach contents and stable isotope analyses. Ontogenetic diet changes were addressed by comparing the feeding habits of three groups of individuals: juveniles, maturing and adults. Our results highlighted that the two species share a similar diet based mostly on the consumption of benthic crustaceans (e.g. hermit crabs). Their trophic level increases during ontogeny, with adults increasing their consumption of large-sized crustaceans (e.g. Calappa granulata, Palinurus elephas), cephalopods (e.g. Octopus vulgaris) and fish (e.g. Trachurus trachurus). Our results provide also evidence of ontogenetic shifts in diet for both species showing a progressive reduction of interspecific trophic overlap during growth. The results of this study contribute to improve the current knowledge on the trophic ecology of these two threatened sharks in the Strait of Sicily, thus providing a better understanding of their role in the food web.


Subject(s)
Animal Feed/analysis , Sharks/growth & development , Animals , Conservation of Natural Resources , Female , Isotope Labeling , Male , Mediterranean Sea , Sharks/classification , Sharks/physiology
6.
Sci Rep ; 10(1): 5103, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32198395

ABSTRACT

Despite the wide knowledge about prevalent effects of ocean acidification on single species, the consequences on species interactions that may promote or prevent habitat shifts are still poorly understood. Using natural CO2 vents, we investigated changes in a key tri-trophic chain embedded within all its natural complexity in seagrass systems. We found that seagrass habitats remain stable at vents despite the changes in their tri-trophic components. Under high pCO2, the feeding of a key herbivore (sea urchin) on a less palatable seagrass and its associated epiphytes decreased, whereas the feeding on higher-palatable green algae increased. We also observed a doubled density of a predatory wrasse under acidified conditions. Bottom-up CO2 effects interact with top-down control by predators to maintain the abundance of sea urchin populations under ambient and acidified conditions. The weakened urchin herbivory on a seagrass that was subjected to an intense fish herbivory at vents compensates the overall herbivory pressure on the habitat-forming seagrass. Overall plasticity of the studied system components may contribute to prevent habitat loss and to stabilize the system under acidified conditions. Thus, preserving the network of species interactions in seagrass ecosystems may help to minimize the impacts of ocean acidification in near-future oceans.


Subject(s)
Alismatales/growth & development , Fishes/physiology , Herbivory/physiology , Sea Urchins/physiology , Seawater/chemistry , Animals , Ecosystem , Hydrogen-Ion Concentration , Hydrothermal Vents , Oceans and Seas
7.
Sci Rep ; 9(1): 9643, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31270338

ABSTRACT

Carbon and nitrogen storage in exotic Halophila stipulacea were compared to that in native Posidonia oceanica and Cymodocea nodosa meadows and adjacent unvegetated sediments of the Eastern Mediterranean Sea and to that in native H. stipulacea of the Red Sea at sites with different biogeochemical conditions and level of human pressure. Exotic H. stipulacea possessed considerable storing capacity, with 2-fold higher Corg stock (0.71 ± 0.05 kg m-2 in the top 20 cm of sediment) and burial (14.78 gCorg m-2 y-1) than unvegetated areas and C. nodosa meadows and, surprisingly, comparable to P. oceanica. N (0.07 ± 0.01 kg m-2) and Cinorg (14.06 ± 8.02 kg m-2) stocks were similar between H. stipulacea and C. nodosa or unvegetated sediments, but different to P. oceanica. Corg and N stocks were higher in exotic than native H. stipulacea populations. Based on isotopic mixing model, organic material trapped in H. stipulacea sediments was mostly allochthonous (seagrass detritus 17% vs seston 67%). Corg stock was similar between monospecific and invaded C. nodosa meadows by H. stipulacea. Higher stocks were measured in the higher human pressure site. H. stipulacea introduction may contribute in the increase of carbon sequestration in the Eastern Mediterranean.


Subject(s)
Carbon Sequestration , Carbon/metabolism , Environmental Monitoring/methods , Geologic Sediments/analysis , Hydrocharitaceae/metabolism , Hydrocharitaceae/growth & development , Mediterranean Sea
SELECTION OF CITATIONS
SEARCH DETAIL
...