Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 2420, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38286801

ABSTRACT

Equiluminant stimuli help assess the integrity of colour perception and the relationship of colour to other visual features. As a result of individual variation, it is necessary to calibrate experimental visual stimuli to suit each individual's unique equiluminant ratio. Most traditional methods rely on training observers to report their subjective equiluminance point. Such paradigms cannot easily be implemented on pre-verbal or non-verbal observers. Here, we present a novel Pupil Frequency-Tagging Method (PFTM) for detecting a participant's unique equiluminance point without verbal instruction and with minimal training. PFTM analyses reflexive pupil oscillations induced by slow (< 2 Hz) temporal alternations between coloured stimuli. Two equiluminant stimuli will induce a similar pupil dilation response regardless of colour; therefore, an observer's equiluminant point can be identified as the luminance ratio between two colours for which the oscillatory amplitude of the pupil at the tagged frequency is minimal. We compared pupillometry-based equiluminance ratios to those obtained with two established techniques in humans: minimum flicker and minimum motion. In addition, we estimated the equiluminance point in non-human primates, demonstrating that this new technique can be successfully employed in non-verbal subjects.


Subject(s)
Color Perception , Contrast Sensitivity , Animals , Humans , Color Perception/physiology , Pupil , Physical Examination , Time Factors , Photic Stimulation
2.
IBRO Neurosci Rep ; 15: 270-280, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37860709

ABSTRACT

B-vitamins have been evaluated as a useful adjuvant therapy to treat pain. In spite of clinical and experimental evidence indicating the analgesic effect of B-vitamins, few studies have investigated their effect on aspects of the inflammatory pain response. In the present study, we investigated the analgesic effect of chronic application of B-complex vitamins (Neurobion) using an inflammatory experimental pain model in rats. Nociceptive behavioral responses were evaluated in male Wistar rats after plantar injection of formalin, comparing the treatment group (TG) with Neurobion pretreatment to the control group (CG) without the pretreatment. In addition, neuronal activity in the central pain pathway was evaluated using c-Fos immunohistochemical reactivity and NADPH-d histochemistry. A highly significant reduction of painful behaviors such as licking and flinching were observed in TG, especially during the secondary phase of the formalin test compared to CG. Results suggest that long-term pre-treatment using Neurobion can have a beneficial effect in reducing the chronic phase of pain. In addition, we observed a downregulation of c-Fos and NADPH-d in dorsal spinal neurons, suggesting that the antinociceptive effect induced by Neurobion could be due to a suppression of nociceptive transmission at the spinal level, particularly in the afferent regions of the dorsal spinal horn, which these neurons utilizing nitric oxide at least as one of their pain neurotransmitters.

3.
Neuroimage Clin ; 35: 103092, 2022.
Article in English | MEDLINE | ID: mdl-35753237

ABSTRACT

Glaucoma is a leading cause of irreversible blindness worldwide, and intraocular pressure (IOP) is an established and modifiable risk factor for both chronic and acute glaucoma. The relationship between color vision deficits and chronic glaucoma has been described previously. However, the effects of acute glaucoma or acute primary angle closure, which has high prevalence in China, on color vision remains unclear. To address the above question, red-green or blue-yellow color responses in V1, V2, and V4 of seven rhesus macaques were monitored using intrinsic-signal optical imaging while monocular anterior chamber perfusions were performed to reversibly elevate IOP acutely over a clinically observed range of 30 to 90 mmHg. We found that the cortical population responses to both red-green and blue-yellow grating stimuli, systematically decreased as IOP increased from 30 to 90 mmHg. Although a similar decrement in magnitude was noted in V1, V2, and V4, blue-yellow responses were consistently more impaired than red-green responses at all levels of acute IOP elevation and in all monitored visual areas. This physiological study in non-human primates demonstrates that acute IOP elevations substantially depress the ability of the visual cortex to register color information. This effect is more severe for blue-yellow responses than for red-green responses, suggesting selective impairment of the koniocellular pathways compared with the parvocellular pathways. Together, we infer that blue-yellow color vision might be the most vulnerable visual function in acute glaucoma patients.


Subject(s)
Glaucoma , Visual Cortex , Animals , Intraocular Pressure , Macaca mulatta , Vision Disorders , Visual Cortex/diagnostic imaging
4.
iScience ; 24(6): 102685, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34195565

ABSTRACT

Rapid and efficient gene transduction via recombinant adeno-associated viruses (rAAVs) is highly desirable across many basic and clinical research domains. Here, we report that vector co-infusion with doxorubicin, a clinical anti-cancer drug, markedly enhanced rAAV-mediated transgene expression in the cerebral cortex across mammalian species (cat, mouse, and macaque), acting throughout the time period examined and detectable at just three days after transfection. This enhancement showed serotype generality, being common to all rAAV serotypes tested (2, 8, 9, and PHP.eB) and was observed both locally and at remote locations consistent with doxorubicin undergoing retrograde axonal transport. All these effects were observed at doses matching human blood plasma levels in clinical therapy and lacked detectable cytotoxicity as assessed by cell morphology, activity, apoptosis, and behavioral testing. Altogether, this study identifies an effective means to improve the capability and scope of in vivo rAAV applications, amplifying cell transduction at doxorubicin concentrations paralleling medical practice.

5.
J Neurosci ; 41(37): 7813-7830, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34326144

ABSTRACT

Negative afterimages are perceptual phenomena that occur after physical stimuli disappear from sight. Their origin is linked to transient post-stimulus responses of visual neurons. The receptive fields (RFs) of these subcortical ON- and OFF-center neurons exhibit antagonistic interactions between central and surrounding visual space, resulting in selectivity for stimulus polarity and size. These two features are closely intertwined, yet their relationship to negative afterimage perception remains unknown. Here we tested whether size differentially affects the perception of bright and dark negative afterimages in humans of both sexes, and how this correlates with neural mechanisms in subcortical ON and OFF cells. Psychophysically, we found a size-dependent asymmetry whereby dark disks produce stronger and longer-lasting negative afterimages than bright disks of equal contrast at sizes >0.8°. Neurophysiological recordings from retinal and relay cells in female cat dorsal lateral geniculate nucleus showed that subcortical ON cells exhibited stronger sustained post-stimulus responses to dark disks, than OFF cells to bright disks, at sizes >1°. These sizes agree with the emergence of center-surround antagonism, revealing stronger suppression to opposite-polarity stimuli for OFF versus ON cells, particularly in dorsal lateral geniculate nucleus. Using a network-based retino-geniculate model, we confirmed stronger antagonism and temporal transience for OFF-cell post-stimulus rebound responses. A V1 population model demonstrated that both strength and duration asymmetries can be propagated to downstream cortical areas. Our results demonstrate how size-dependent antagonism impacts both the neuronal post-stimulus response and the resulting afterimage percepts, thereby supporting the idea of perceptual RFs reflecting the underlying neuronal RF organization of single cells.SIGNIFICANCE STATEMENT Visual illusions occur when sensory inputs and perceptual outcomes do not match, and provide a valuable tool to understand transformations from neural to perceptual responses. A classic example are negative afterimages that remain visible after a stimulus is removed from view. Such perceptions are linked to responses in early visual neurons, yet the details remain poorly understood. Combining human psychophysics, neurophysiological recordings in cats and retino-thalamo-cortical computational modeling, our study reveals how stimulus size and the receptive-field structure of subcortical ON and OFF cells contributes to the parallel asymmetries between neural and perceptual responses to bright versus dark afterimages. Thus, this work provides a deeper link from the underlying neural mechanisms to the resultant perceptual outcomes.


Subject(s)
Afterimage/physiology , Retina/physiology , Thalamus/physiology , Visual Fields/physiology , Visual Pathways/physiology , Visual Perception/physiology , Action Potentials/physiology , Adult , Animals , Cats , Female , Humans , Male , Neurons/physiology , Young Adult
6.
Elife ; 102021 05 17.
Article in English | MEDLINE | ID: mdl-33998459

ABSTRACT

The ventral visual pathway is crucially involved in integrating low-level visual features into complex representations for objects and scenes. At an intermediate stage of the ventral visual pathway, V4 plays a crucial role in supporting this transformation. Many V4 neurons are selective for shape segments like curves and corners; however, it remains unclear whether these neurons are organized into clustered functional domains, a structural motif common across other visual cortices. Using two-photon calcium imaging in awake macaques, we confirmed and localized cortical domains selective for curves or corners in V4. Single-cell resolution imaging confirmed that curve- or corner-selective neurons were spatially clustered into such domains. When tested with hexagonal-segment stimuli, we find that stimulus smoothness is the cardinal difference between curve and corner selectivity in V4. Combining cortical population responses with single-neuron analysis, our results reveal that curves and corners are encoded by neurons clustered into functional domains in V4. This functionally specific population architecture bridges the gap between the early and late cortices of the ventral pathway and may serve to facilitate complex object recognition.


Subject(s)
Visual Cortex/physiology , Visual Perception/physiology , Animals , Calcium/metabolism , Form Perception/physiology , Macaca mulatta , Male , Neurons/physiology , Visual Cortex/cytology
7.
Neuron ; 108(3): 538-550.e5, 2020 11 11.
Article in English | MEDLINE | ID: mdl-32853551

ABSTRACT

The perception of color is an internal label for the inferred spectral reflectance of visible surfaces. To study how spectral representation is transformed through modular subsystems of successive cortical areas, we undertook simultaneous optical imaging of intrinsic signals in macaque V1, V2, and V4, supplemented by higher-resolution electrophysiology and two-photon imaging in awake macaques. We find a progressive evolution in the scale and precision of chromotopic maps, expressed by a uniform blob-like architecture of hue responses within each area. Two-photon imaging reveals enhanced hue-specific cell clustering in V2 compared with V1. A phenomenon of endspectral (red and blue) responses that is clear in V1, recedes in V2, and is virtually absent in V4. The increase in mid- and extra-spectral hue representations through V2 and V4 reflects the nature of hierarchical processing as higher areas read out locations in chromatic space from progressive integration of signals relayed by V1.


Subject(s)
Color Perception/physiology , Visual Cortex/physiology , Visual Pathways/physiology , Animals , Brain Mapping/methods , Female , Macaca mulatta , Male , Neurons/physiology , Photic Stimulation/methods
8.
Invest Ophthalmol Vis Sci ; 61(5): 59, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32462199

ABSTRACT

Purpose: To physiologically examine the impairment of cortical sensitivity to visual motion during acute elevation of intraocular pressure (IOP). Methods: Motion processing in the cat brain is well characterized, its X and Y cell visual pathways being functionally analogous to parvocellular and magnocellular pathways in primates. Using this model, we performed ocular anterior chamber perfusion to reversibly elevate IOP over a range from 30 to 90 mm Hg while monitoring cortical activity with intrinsic signal optical imaging. Drifting random-dot fields and gratings were used to characterize cortical population responses to motion direction and orientation in early visual areas 17 and 18. Results: We found that acute IOP elevations at 50 mm Hg and above, which is often observed in acute glaucoma, suppressed cortical motion direction responses. This suppression was more profound in area 17 than in area 18, and more profound in central than peripheral visual field (eccentricities 0°-4° vs. 4°-8°) within area 17. In addition, orientation responses were more suppressed than motion direction responses for the same IOP modulation. Conclusions: In contrast to human chronic glaucoma that may cause greater dysfunction in large-cell magnocellular than in small-cell parvocellular visual pathways, our direct measurement of cortical processing networks implies that the small X-cell pathway shows greater vulnerability to acute IOP elevation than the large Y-cell pathway in visual motion processing. The results demonstrate that fine discrimination mechanisms for motion in the central visual field are particularly impacted by acute IOP attacks, suggesting a neural basis for immediate visual deficits in the fine motion perception of acute glaucoma patients.


Subject(s)
Intraocular Pressure , Motion Perception , Ocular Hypertension/physiopathology , Visual Cortex/physiopathology , Visual Perception , Acute Disease , Animals , Cats , Female , Humans , Male , Time Factors
9.
Front Neurosci ; 14: 612153, 2020.
Article in English | MEDLINE | ID: mdl-33424543

ABSTRACT

In a pattern of horizontal lines containing ± 45° zigzagging phase-shifted strips, vivid illusory motion is perceived when the pattern is translated up or down at a moderate speed. Two forms of illusory motion are seen: [i] a motion "racing" along the diagonal interface between the strips and [ii] lateral (sideways) motion of the strip sections. We found the relative salience of these two illusory motions to be strongly influenced by the vertical spacing and length of the line gratings, and the period length of the zigzag strips. Both illusory motions are abolished when the abutting strips are interleaved, separated by a gap or when a real line is superimposed at the interface. Illusory motion is also severely weakened when equiluminant colored grating lines are used. Illusory motion perception is fully restored at < 20% luminance contrast. Using adaptation, we find that line-ends alone are insufficient for illusory motion perception, and that both physical carrier motion and line orientation are required. We finally test a classical spatiotemporal energy model of V1 cells that exhibit direction tuning changes that are consistent with the direction of illusory motion. Taking this data together, we constructed a new visual illusion and surmise its origin to interactions of spatial and temporal energy of the lines and line-ends preferentially driving the magnocellular pathway.

10.
EBioMedicine ; 44: 554-562, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31178426

ABSTRACT

BACKGROUND: Glaucoma is the leading cause of irreversible blindness worldwide and elevated intraocular pressure (IOP) is an established risk factor. Visual acuity, the capacity for fine analysis of spatial frequency (SF) information, is relatively preserved in central vision until the later stages of chronic glaucoma. However, for acute glaucoma that is associated with sharp IOP elevation, how visual acuity is affected by acute IOP elevation remains unclear. METHODS: Using intrinsic-signal optical imaging of large areas of visual cortices V1 and V2 in seven rhesus macaques, visual acuity was directly examined during acute IOP elevation at 70 mmHg, a pressure often observed in acute angle-closure glaucoma. Acute IOP elevation was achieved by reversible monocular anterior chamber perfusions, and visual acuity was quantified by cortical population responses to various SFs ranging from 0.5-6 cycles/°. FINDINGS: Acute IOP elevation particularly depressed the ability of the visual cortex to register fine details (at high SFs referring to visual acuity), an effect that was progressively more severe toward the central visual field. These results completely contrast with long-term impairments present in chronic glaucoma. INTERPRETATION: Our results show that impairment of fine visual discrimination within the central visual field is the principal consequence of sharp IOP elevation, implicating relatively greater dysfunction in parvocellular pathways. This study provides direct cortical neural evidence for the immediate visual acuity impairment in acute glaucoma patients. FUND: National Natural Science Foundation of China, Chinese Academy of Sciences, Shanghai Committee of Science and Technology, and Shanghai Municipal Health Commission.


Subject(s)
Glaucoma/physiopathology , Intraocular Pressure , Visual Acuity , Acute Disease , Animals , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Disease Models, Animal , Female , Glaucoma/diagnosis , Glaucoma/etiology , Macaca mulatta , Male , Optical Imaging
11.
J Neurosci ; 39(14): 2664-2685, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30777886

ABSTRACT

Studying the mismatch between perception and reality helps us better understand the constructive nature of the visual brain. The Pinna-Brelstaff motion illusion is a compelling example illustrating how a complex moving pattern can generate an illusory motion perception. When an observer moves toward (expansion) or away (contraction) from the Pinna-Brelstaff figure, the figure appears to rotate. The neural mechanisms underlying the illusory complex-flow motion of rotation, expansion, and contraction remain unknown. We studied this question at both perceptual and neuronal levels in behaving male macaques by using carefully parametrized Pinna-Brelstaff figures that induce the above motion illusions. We first demonstrate that macaques perceive illusory motion in a manner similar to that of human observers. Neurophysiological recordings were subsequently performed in the middle temporal area (MT) and the dorsal portion of the medial superior temporal area (MSTd). We find that subgroups of MSTd neurons encoding a particular global pattern of real complex-flow motion (rotation, expansion, contraction) also represent illusory motion patterns of the same class. They require an extra 15 ms to reliably discriminate the illusion. In contrast, MT neurons encode both real and illusory local motions with similar temporal delays. These findings reveal that illusory complex-flow motion is first represented in MSTd by the same neurons that normally encode real complex-flow motion. However, the extraction of global illusory motion in MSTd from other classes of real complex-flow motion requires extra processing time. Our study illustrates a cascaded integration mechanism from MT to MSTd underlying the transformation from external physical to internal nonveridical flow-motion perception.SIGNIFICANCE STATEMENT The neural basis of the transformation from objective reality to illusory percepts of rotation, expansion, and contraction remains unknown. We demonstrate psychophysically that macaques perceive these illusory complex-flow motions in a manner similar to that of human observers. At the neural level, we show that medial superior temporal (MSTd) neurons represent illusory flow motions as if they were real by globally integrating middle temporal area (MT) local motion signals. Furthermore, while MT neurons reliably encode real and illusory local motions with similar temporal delays, MSTd neurons take a significantly longer time to process the signals associated with illusory percepts. Our work extends previous complex-flow motion studies by providing the first detailed analysis of the neuron-specific mechanisms underlying complex forms of illusory motion integration from MT to MSTd.


Subject(s)
Illusions/physiology , Motion Perception/physiology , Photic Stimulation/methods , Visual Cortex/physiology , Visual Pathways/physiology , Adult , Animals , Female , Humans , Illusions/psychology , Macaca , Male , Young Adult
12.
Neuron ; 98(2): 417-428.e3, 2018 04 18.
Article in English | MEDLINE | ID: mdl-29606580

ABSTRACT

How primates perceive objects along with their detailed features remains a mystery. This ability to make fine visual discriminations depends upon a high-acuity analysis of spatial frequency (SF) along the visual hierarchy from V1 to inferotemporal cortex. By studying the transformation of SF across macaque parafoveal V1, V2, and V4, we discovered SF-selective functional domains in V4 encoding higher SFs up to 12 cycles/°. These intermittent higher-SF-selective domains, surrounded by domains encoding lower SFs, violate the inverse relationship between SF preference and retinal eccentricity. The neural activities of higher- and lower-SF domains correspond to local and global features, respectively, of the same stimuli. Neural response latencies in high-SF domains are around 10 ms later than in low-SF domains, consistent with the coarse-to-fine nature of perception. Thus, our finding of preserved resolution from V1 into V4, separated both spatially and temporally, may serve as a connecting link for detailed object representation.


Subject(s)
Brain Mapping/methods , Photic Stimulation/methods , Visual Cortex/physiology , Visual Pathways/physiology , Visual Perception/physiology , Animals , Cluster Analysis , Female , Macaca mulatta , Male , Visual Cortex/chemistry , Visual Cortex/cytology , Visual Pathways/chemistry , Visual Pathways/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...