Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Womens Health ; 23(1): 68, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36793022

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) presents clinical symptoms of menstrual abnormalities, excessive hair growth (hirsutism), scalp hair loss, acne and infertility. Metabolic abnormalities such as obesity, insulin resistance, glucose intolerance and cardiovascular problems constitute an essential part of PCOS, all of which can have significant long-term health consequences. Low-grade chronic inflammation demonstrated by persistent moderately elevated serum levels of inflammatory and coagulatory markers plays a critical role in the pathogenesis of PCOS. Oral contraceptive pills (OCPs) constitute the mainstay of pharmacologic therapy for women with PCOS to regularize cyclicity and ameliorate androgen excess. On the other hand, OCP use is associated with various venous thromboembolic and proinflammatory events in the general population. PCOS women always carriers the increased lifetime risk of these events. The studies on the effect of OCPs on inflammatory, coagulation and metabolic parameters in PCOS are less robust. Therefore in this study, we investigated and compared the messenger RNA (mRNA) expression profiles of genes implicated in inflammatory and coagulation pathways between drug-naive and OCP-treated PCOS women. The selected genes include intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and plasminogen activator inhibitor-1 (PAI-1). Furthermore, the correlation between the selected markers and various metabolic indices in the OCP group has also been explored. METHOD: The relative amounts of ICAM-1, TNF-α, MCP-1 and PAI-1 mRNA in peripheral blood mononuclear cells from 25 drug-naive PCOS subjects (controls) and 25 PCOS subjects who received OCPs containing 0.03 mg-ethinyl-estradiol and 0.15 mg-levonorgestrel for at least six months (cases) were estimated using real-time qPCR. The statistical interpretation was conducted using SPSS version 20.0 (SPSS, Inc, Chicago, IL), Epi Info version 2002 (Disease Control and Prevention Centres, Atlanta, GA) and GraphPad Prism 5 (GraphPad Software, La Jolla, CA) software. RESULT: Six months of OCP therapy enhanced the expression of inflammatory genes viz ICAM-1, TNF-α and MCP-1 mRNA in PCOS women by 2.54, 2.05 and 1.74 folds, respectively, in this study. However, PAI-1 mRNA in the OCP group showed no significant increase. Furthermore, in cases, ICAM-1 mRNA expression positively correlated with body mass index (BMI) (p = 0.01), fasting insulin (p = 0.01), insulin 2 h p = 0.02), glucose 2 h (p = 0.01) and triglycerides (p = 0.01). TNF-α mRNA expression positively correlated with fasting insulin (p = 0.0007). MCP-1 mRNA expression positively correlated with (BMI) (p = 0.002). CONCLUSION: OCPs helped reduce clinical hyperandrogenism and regularise menstrual cycles in women with PCOS. However, OCP use was associated with increased fold expression of inflammatory markers which positively correlated with metabolic abnormalities.


Subject(s)
Polycystic Ovary Syndrome , Female , Humans , Body Mass Index , Chemokine CCL2/genetics , Contraceptives, Oral/therapeutic use , Gene Expression , Insulin , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/therapeutic use , Leukocytes, Mononuclear/metabolism , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/therapeutic use , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/genetics , RNA, Messenger/metabolism , RNA, Messenger/therapeutic use , Tumor Necrosis Factor-alpha
2.
Funct Integr Genomics ; 22(6): 1315-1330, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35931837

ABSTRACT

Apple scab is caused by an ascomycete fungus, Venturia inaequalis (Cke.) Wint., which is one of the most severe disease of apple (Malus × Domestica Borkh.) worldwide. The disease results in 30-40% fruit loss annually and even complete loss in some places. Owing to the evolving susceptibility of resistant apple genotypes harboring R-genes to new variants of V. inaequalis, a comparative transcriptome analysis using Illumina (HiSeq) platform of three scab-resistant (Florina, Prima, and White Dotted Red) and three susceptible (Ambri, Vista Bella, and Red Delicious) apple genotypes was carried out to mine new scab resistance genes. The study led to the identification of 822 differentially expressed genes in the tested scab-resistant and scab-susceptible apple genotypes. The most upregulated genes uniformly expressed in resistant varieties compared to susceptible ones were those coding for 17.3 kDa class II heat shock protein-like, chaperone protein ClpB1, glutathione S-transferase L3-like protein, B3 domain-containing protein At3g18960-like, transcription factor bHLH7, zinc finger MYM-type protein 1-like, and nine uncharacterized proteins, besides three lncRNAs. The genes that were downregulated in susceptible and upregulated in resistant cultivars were those coding for non-specific lipid transfer protein GPI-anchored 1, rust resistance kinase Lr10-like, disease resistance protein RPS6-like, and many uncharacterized proteins. DESeq2 analysis too revealed 20 DEGs that were upregulated in scab-resistant cultivars. Furthermore, a total of 361 genes were significantly upregulated in scab-susceptible variety, while 461 were found downregulated (P value < 0.05 and Log2 (FC) > 1). The differentially expressed genes (DEGs) were related to various pathways, i.e., metabolic, protein processing, biosynthesis of secondary metabolites, plant hormone signal transduction, autophagy, ubiquitin-mediated proteolysis, plant-pathogen interaction, lipid metabolism, and protein modification pathways. Real-time expression of a set of selected twelve DEGs further validated the results obtained from RNA-seq. Overall, these findings lay the foundation for investigating the genetic basis of apple scab resistance and defense pathways that might have a plausible role in governing scab resistance in apple against V. inaequalis.


Subject(s)
Ascomycota , Malus , Malus/genetics , Malus/metabolism , Malus/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Transcriptome , Ascomycota/genetics , Disease Resistance/genetics , Proteins/genetics
3.
Endocrine ; 75(2): 614-622, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34611799

ABSTRACT

OBJECTIVE: Polycystic ovary syndrome (PCOS) is one of the most common reproductive, endocrine, and metabolic disorder in premenopausal women. Even though the pathophysiology of PCOS is complex and obscure, the disorder is prominently considered as the syndrome of hyperandrogenism. C-Terminal binding protein 1 antisense (CTBP1-AS) acts as a novel androgen receptor regulating long noncoding RNA (lncRNA). Therefore, the present study was aimed to establish the possible association of androgen receptor regulating long noncoding RNA CTBP1-AS with PCOS. METHODS: A total of 178 subjects including 105 PCOS cases and 73 age-matched healthy controls were recruited for the study. The anthropometric, hormonal, and biochemical parameters of all subjects were analyzed. Total RNA was isolated from peripheral venous blood and expression analysis was done by quantitative real-time PCR. The correlation analysis was performed to evaluate the association between and various clinical parameters and lncRNA CTBP1-AS expression. RESULTS AND CONCLUSION: The mean expression level of CTBP1-AS was found to be significantly higher in the PCOS women than in the healthy controls (-lnCTBP1-AS, 4.23 ± 1.68 versus 1.24 ± 0.29, P < 0.001). Furthermore, subjects with higher expression level of CTBP1-AS had significantly higher risk of PCOS compared to subjects with low levels of CTBP1-AS expression (actual OR = 11.36, 95% CI = 5.59-23.08, P < 0.001). The area under receiver operator characteristic (ROC) curve was 0.987 (SE 0.006, 95% CI 0.976-0.99). However, lncRNA CTBP1-AS was found to have no association with different clinical characteristics of PCOS. In conclusion, androgen receptor coregulating lncRNA CTBP1-AS is associated with PCOS women and high expression of CTBP1-AS is a risk factor for PCOS in Kashmiri women.


Subject(s)
Hyperandrogenism , Polycystic Ovary Syndrome , RNA, Long Noncoding , Female , Humans , Hyperandrogenism/complications , RNA, Long Noncoding/genetics , Receptors, Androgen/genetics , Risk Factors
4.
Sci Rep ; 7(1): 12543, 2017 10 02.
Article in English | MEDLINE | ID: mdl-28970546

ABSTRACT

Membrane proteins plays significant role in living cells. Transmembrane proteins are estimated to constitute approximately 30% of proteins at genomic scale. It has been a difficult task to develop specific alignment tools for transmembrane proteins due to limited number of experimentally validated protein structures. Alignment tools based on homology modeling provide fairly good result by recapitulating 70-80% residues in reference alignment provided all input sequences should have known template structures. However, homology modeling tools took substantial amount of time, thus aligning large numbers of sequences becomes computationally demanding. Here we present TM-Aligner, a new tool for transmembrane protein sequence alignment. TM-Aligner is based on Wu-Manber and dynamic string matching algorithm which has significantly improved its accuracy and speed of multiple sequence alignment. We compared TM-Aligner with prevailing other popular tools and performed benchmarking using three separate reference sets, BaliBASE3.0 reference set7 of alpha-helical transmembrane proteins, structure based alignment of transmembrane proteins from Pfam database and structure alignment from GPCRDB. Benchmarking against reference datasets indicated that TM-Aligner is more advanced method having least turnaround time with significant improvements over the most accurate methods such as PROMALS, MAFFT, TM-Coffee, Kalign, ClustalW, Muscle and PRALINE. TM-Aligner is freely available through http://lms.snu.edu.in/TM-Aligner/ .


Subject(s)
Genomics , Membrane Proteins/genetics , Sequence Alignment/methods , Software , Algorithms , Amino Acid Sequence/genetics , Databases, Protein , Genome/genetics , Internet , Sequence Analysis, Protein/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...