Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Braz. j. infect. dis ; 20(6): 546-555, Nov.-Dec. 2016. tab, graf
Article in English | LILACS | ID: biblio-828157

ABSTRACT

ABSTRACT Plesiomonas shigelloides isolated from water in Brazil was previously described as a hemorrhagic heat-labile cytotoxic-enterotoxin producer. We purified this toxin from culture supernatants using ion metallic affinity chromatography (IMAC) followed by molecular exclusion chromatography. The pure toxin presented molecular mass of 50 kDa and isoelectric point (pI) around 6.9 by 2D electrophoresis. When injected intravenously, the purified cytotoxic-enterotoxin induced also severe spasms followed by sudden death of mice. Hence, we entitled it as lethal cytotoxic-enterotoxin (LCE). The presence of membrane vesicles (MVs) on cell surfaces of P. shigelloides was observed by scan electron microscopy (SEM). From these MVs the LCE toxin was extracted and confirmed by biological and serological assays. These data suggest that P. shigelloides also exports this cytotoxic-enterotoxin by membrane vesicles, a different mechanism of delivering extra cellular virulence factors, so far not described in this bacterium.


Subject(s)
Animals , Male , Rats , Cell Survival/drug effects , Plesiomonas/metabolism , Cytoplasmic Vesicles , Virulence Factors , Rivers/microbiology , Enterotoxins/pharmacology , Vero Cells , Neutralization Tests , Microscopy, Electron, Scanning , Chlorocebus aethiops , Plesiomonas/pathogenicity , Plesiomonas/ultrastructure , Lethal Dose 50
2.
Braz J Infect Dis ; 20(6): 546-555, 2016.
Article in English | MEDLINE | ID: mdl-27770615

ABSTRACT

Plesiomonas shigelloides isolated from water in Brazil was previously described as a hemorrhagic heat-labile cytotoxic-enterotoxin producer. We purified this toxin from culture supernatants using ion metallic affinity chromatography (IMAC) followed by molecular exclusion chromatography. The pure toxin presented molecular mass of 50kDa and isoelectric point (pI) around 6.9 by 2D electrophoresis. When injected intravenously, the purified cytotoxic-enterotoxin induced also severe spasms followed by sudden death of mice. Hence, we entitled it as lethal cytotoxic-enterotoxin (LCE). The presence of membrane vesicles (MVs) on cell surfaces of P. shigelloides was observed by scan electron microscopy (SEM). From these MVs the LCE toxin was extracted and confirmed by biological and serological assays. These data suggest that P. shigelloides also exports this cytotoxic-enterotoxin by membrane vesicles, a different mechanism of delivering extra cellular virulence factors, so far not described in this bacterium.


Subject(s)
Cell Survival/drug effects , Cytoplasmic Vesicles , Enterotoxins/pharmacology , Plesiomonas/metabolism , Rivers/microbiology , Virulence Factors , Animals , Chlorocebus aethiops , Lethal Dose 50 , Male , Microscopy, Electron, Scanning , Neutralization Tests , Plesiomonas/pathogenicity , Plesiomonas/ultrastructure , Rabbits , Vero Cells
3.
PLoS One ; 10(5): e0125101, 2015.
Article in English | MEDLINE | ID: mdl-25973801

ABSTRACT

The fact that drugs currently used in the treatment of Leishmania are highly toxic and associated with acquired resistance has promoted the search for new therapies for treating American tegumentary leishmaniasis (ATL). In this study, BALB/c mice were injected in the hind paw with Leishmania (Leishmania) amazonensis and subsequently treated with a combination of nitric oxide (NO) donor (cis-[Ru(bpy) 2imN(NO)](PF6)3) (Ru-NO), given by intraperitoneal injection, and oral Brazilian propolis for 30 days. Ru-NO reached the center of the lesion and increased the NO level in the injured hind paw without lesion exacerbation. Histological and immunological parameters of chronic inflammation showed that this combined treatment increased the efficacy of macrophages, determined by the decrease in the number of parasitized cells, leading to reduced expression of proinflammatory and tissue damage markers. In addition, these drugs in combination fostered wound healing, enhanced the number of fibroblasts, pro-healing cytokines and induced collagen synthesis at the lesion site. Overall, our findings suggest that the combination of the NO donor Ru-NO and Brazilian propolis alleviates experimental ATL lesions, highlighting a new therapeutic option that can be considered for further in vivo investigations as a candidate for the treatment of cutaneous leishmaniasis.


Subject(s)
Leishmania/drug effects , Leishmaniasis, Cutaneous/drug therapy , Nitric Oxide Donors/chemistry , Nitric Oxide/pharmacology , Propolis/pharmacology , Administration, Oral , Animals , Cell Movement/drug effects , Collagen/biosynthesis , Cytokines/biosynthesis , Drug Synergism , Drug Therapy, Combination , Female , Fibroblasts/drug effects , Fibroblasts/parasitology , Fibroblasts/pathology , Hindlimb , Injections, Intraperitoneal , Leishmania/growth & development , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/pathology , Macrophages/drug effects , Macrophages/parasitology , Macrophages/pathology , Mice , Mice, Inbred BALB C , Nitric Oxide Donors/pharmacology , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...