Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 8(11)2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33147701

ABSTRACT

Colistin has been extensively used since the middle of the last century in animals, particularly in swine, for the control of enteric infections. Colistin is presently considered the last line of defense against human infections caused by multidrug-resistant Gram-negative organisms such as carbapenemase-producer Enterobacterales, Acinetobacter baumanni, and Pseudomonas aeruginosa. Transferable bacterial resistance like mcr-genes was reported in isolates from both humans and animals. Researchers actively seek strategies to reduce colistin resistance. The definition of guidelines for colistin therapy in veterinary and human medicine is thus crucial. The ban of colistin use in swine as a growth promoter and for prophylactic purposes, and the implementation of sustainable measures in farm animals for the prevention of infections, would help to avoid resistance and should be encouraged. Colistin resistance in the human-animal-environment interface stresses the relevance of the One Health approach to achieve its effective control. Such measures should be addressed in a cooperative way, with efforts from multiple disciplines and with consensus among doctors, veterinary surgeons, and environment professionals. A revision of the mechanism of colistin action, resistance, animal and human use, as well as colistin susceptibility evaluation is debated here.

2.
Front Microbiol ; 11: 1944, 2020.
Article in English | MEDLINE | ID: mdl-32849485

ABSTRACT

A rapid flow cytometric antimicrobial susceptibility test for bacteria isolated from companion animals - the FASTvet assay, developed by FASTinov®, was evaluated. Bacterial strains isolated from different biological samples of companion animals with infectious diseases in progress were obtained from several veterinary clinical laboratories across the country. A total of 115 strains, comprising 65 Gram-negative and 50 Gram positive isolates, were incubated with 13 antimicrobial drugs (ampicillin, amoxicillin-clavulanic acid, piperacillin-tazobactam, cefpodoxime, imipenem, enrofloxacin, gentamicin, amikacin for Gram-negative; penicillin, cefoxitin, enrofloxacin, vancomycin and ampicillin for Gram-positive) at breakpoint concentrations following CLSI protocol (CLSI Vet 01, 2018) for 1 h and analyzed by flow cytometry. The overall categorical agreement was 95.6% in case of Gram-negative and of 96.7% in Gram-positive isolates when compared to microdilution. FASTvet kits contribute to reduce the turnaround time (2 vs. 24 h) with early determination of the antimicrobial susceptibility profile. The correct and rapid choice of the target antibiotic therapy, will have a positive impact on animal care, contributing for preventing antimicrobial resistance. In conclusion, FASTinov® vet kits showed an excellent performance, both for Gram-negative and Gram-positive isolates encouraging us to enlarge the sample size and planning multicentric studies.

3.
Clin Microbiol Infect ; 26(11): 1559.e1-1559.e4, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32835792

ABSTRACT

OBJECTIVES: Both EUCAST and CLSI recommend broth microdilution for antimicrobial susceptibility testing of colistin, but this method is cumbersome and takes 16-24 h to give results. Our objective was to evaluate a rapid quantitative colistin MIC susceptibility assay based on flow cytometry analysis (FASTcolistin MIC) in comparison with standard broth microdilution assay. METHODS: One hundred and sixteen Gram-negative bacilli (78 Enterobacterales, 28 Pseudomonas aeruginosa and 10 Acinetobacter baumannii) were studied in parallel using standard broth microdilution following EUCAST recommendations and FASTcolistin MIC kit. In the last one, a bacteria suspension (0.5 MacFarland) was prepared, diluted in Muller-Hinton broth, incubated in the susceptibility panel containing different colistin concentrations (range 0.125-64 mg/L) with a fluorescent probe and incubated 1 h at 35ºC. After that, a flow cytometry analysis using CytoFLEX (Beckmam) was performed. Using a dedicated software (BioFAST) an automated MIC result was obtained after 1.5 h. Performance evaluation was performed according to the ISO standard 20776-2. Reproducibility and repeatability, categorical (CA) and essential agreement (EA), and lot-to-lot variation and operator-to-operator variability, as well as time to results were determined. RESULTS: Overall, 100% CA (CI 97-100%) and 95.7% EA (CI 90-98%) was obtained with high repeatability (100%; CI 80-100%)and reproducibility (97%; (CI 83-99%)). Absence of lot-to-lot variations or differences in the operators' performance was observed. CONCLUSIONS: FASTcolistin MIC is an accurate, reliable and ultra-rapid method (1 h incubation versus 24 h) for susceptibility testing of colistin of common Gram-negative bacilli recovered in clinical laboratories.


Subject(s)
Acinetobacter baumannii/drug effects , Colistin/pharmacology , Enterobacteriaceae/drug effects , Pseudomonas aeruginosa/drug effects , Flow Cytometry , Microbial Sensitivity Tests , Reproducibility of Results , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...