Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 382(3): 335-345, 2022 09.
Article in English | MEDLINE | ID: mdl-35798387

ABSTRACT

6-Mercaptopurine (6-MP) is used extensively in the treatment of acute lymphoblastic leukemia (ALL) and inflammatory bowel diseases. Our laboratory determined previously, using a recombinant HEK293 cell model, that the SLC43A3-encoded equilibrative nucleobase transporter 1 (ENBT1) transports 6-MP into cells and significantly impacts the cytotoxicity of 6-MP in that model. To further investigate the clinical relevance of this finding, we now extend this work to an analysis of the impact of SLC43A3/ENBT1 expression and function on 6-MP uptake and cytotoxicity in leukemic lymphoblasts, the therapeutic target of 6-MP in ALL. A panel of ALL cell lines was assessed for SLC43A3/ENBT1 expression, ENBT1 function, and sensitivity to 6-MP. There was a significant difference in SLC43A3 expression among the cell lines that positively correlated with the rate of ENBT1-mediated 6-MP uptake. Cells with the lowest expression of SLC43A3 (SUP-B15: Vmax = 22± 5 pmol/µl per second) were also significantly less sensitive to 6-MP-induced cytotoxicity than were the highest expressing cells (ALL-1: Vmax = 69 ± 10 pmol/µl per second). Furthermore, knockdown of ENBT1 using short hairpin RNA interference (shRNAi) in RS4;11 cells caused a significant decrease in ENBT1-mediated 6-MP uptake (Vmax: RS4;11 = 40 ± 4 pmol/µl per second; RS4;11 shRNAi = 26 ± 3 pmol/µl per Second) and 6-MP cytotoxicity (EC50: RS4;11 = 0.58 ± 0.05 µM; RS4;11 shRNAi =1.44 ± 0.59 µM). This study showed that ENBT1 is a major contributor to 6-MP uptake in leukemia cell lines and may prove to be a biomarker for the therapeutic efficacy of 6-MP in patients with ALL. SIGNIFICANCE STATEMENT: This study shows that SLC43A3-encoded equilibrative nucleobase transporter 1 is responsible for the transport of 6-mercaptopurine (6-MP) into leukemia cells and that its level of expression can impact the cytotoxicity of 6-MP. Further studies are warranted to investigate the therapeutic implications in patient populations.


Subject(s)
Mercaptopurine , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Amino Acid Transport Systems/metabolism , Biological Transport , HEK293 Cells , Humans , Mercaptopurine/pharmacology , Mercaptopurine/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...