Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Type of study
Language
Publication year range
1.
Mem Inst Oswaldo Cruz ; 117: e220127, 2022.
Article in English | MEDLINE | ID: mdl-36478156

ABSTRACT

BACKGROUND: In Brazil, the yellow fever virus (YFV) is maintained in a sylvatic cycle involving wild mosquitoes and non-human primates (NHPs). The virus is endemic to the Amazon region; however, waves of epidemic expansion reaching other Brazilian states sporadically occur, eventually causing spillovers to humans. OBJECTIVES: To report a surveillance effort that led to the first confirmation of YFV in NHPs in the state of Minas Gerais (MG), Southeast region, in 2021. METHODS: A surveillance network was created, encompassing the technology of smartphone applications and coordinated actions of several research institutions and health services to monitor and investigate NHP epizootics. FINDINGS: When alerts were spread through the network, samples from NHPs were collected and YFV infection confirmed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and genome sequencing at an interval of only 10 days. Near-complete genomes were generated using the Nanopore MinION sequencer. Phylogenetic analysis indicated that viral genomes were related to the South American genotype I, clustering with a genome detected in the Amazon region (state of Pará) in 2017, named YFVPA/MG sub-lineage. Fast YFV confirmation potentialised vaccination campaigns. MAIN CONCLUSIONS: A new YFV introduction was detected in MG 6 years after the beginning of the major outbreak reported in the state (2015-2018). The YFV strain was not related to the sub-lineages previously reported in MG. No human cases have been reported, suggesting the importance of coordinated surveillance of NHPs using available technologies and supporting laboratories to ensure a quick response and implementation of contingency measures to avoid YFV spillover to humans.


Subject(s)
Yellow fever virus , Yellow fever virus/genetics , Phylogeny , Brazil/epidemiology
2.
Mem. Inst. Oswaldo Cruz ; 117: e220127, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1405996

ABSTRACT

BACKGROUND In Brazil, the yellow fever virus (YFV) is maintained in a sylvatic cycle involving wild mosquitoes and non-human primates (NHPs). The virus is endemic to the Amazon region; however, waves of epidemic expansion reaching other Brazilian states sporadically occur, eventually causing spillovers to humans. OBJECTIVES To report a surveillance effort that led to the first confirmation of YFV in NHPs in the state of Minas Gerais (MG), Southeast region, in 2021. METHODS A surveillance network was created, encompassing the technology of smartphone applications and coordinated actions of several research institutions and health services to monitor and investigate NHP epizootics. FINDINGS When alerts were spread through the network, samples from NHPs were collected and YFV infection confirmed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and genome sequencing at an interval of only 10 days. Near-complete genomes were generated using the Nanopore MinION sequencer. Phylogenetic analysis indicated that viral genomes were related to the South American genotype I, clustering with a genome detected in the Amazon region (state of Pará) in 2017, named YFVPA/MG sub-lineage. Fast YFV confirmation potentialised vaccination campaigns. MAIN CONCLUSIONS A new YFV introduction was detected in MG 6 years after the beginning of the major outbreak reported in the state (2015-2018). The YFV strain was not related to the sub-lineages previously reported in MG. No human cases have been reported, suggesting the importance of coordinated surveillance of NHPs using available technologies and supporting laboratories to ensure a quick response and implementation of contingency measures to avoid YFV spillover to humans.

3.
Ecohealth ; 18(4): 414-420, 2021 12.
Article in English | MEDLINE | ID: mdl-34843021

ABSTRACT

In 2019, a new coronavirus disease (COVID-19) was detected in China. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was capable to infect domestic and captive mammals like cats, tigers and minks. Due to genetic similarities, concern about the infection of non-human primates (NHPs) and the establishment of a sylvatic cycle has grown in the Americas. In this study, neotropical primates (NP) were sampled in different areas from Brazil to investigate whether they were infected by SARS-CoV-2. A total of 89 samples from 51 NP of four species were examined. No positive samples were detected via RT-qPCR, regardless of the NHP species, tissue or habitat tested. This work provides the first report on the lack of evidence of the circulation of SARS-CoV-2 in NP. The expansion of wild animals sampling is necessary to understand their role in the epidemiology of SARS-CoV-2 and other potentially zoonotic pathogens in natural environments shared by humans.


Subject(s)
COVID-19 , Pandemics , Animals , Brazil , Humans , Primates , SARS-CoV-2
4.
Arch Virol ; 162(1): 317-319, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27730382

ABSTRACT

The complete genome sequence of a new virus infecting yam plants exhibiting mosaic symptom in Brazil was determined. The genome of this virus is composed of two molecules of positive-sense RNAs of 5979 and 3809 nucleotides in length, excluding the poly(A) tails. One large open reading frame (ORF) in each genomic segment (RNA1-ORF1 and RNA2-ORF2) was predicted. The highest amino acid sequence similarity in the Pro-Pol core region of RNA1 and the CP region of RNA2 was observed with chocolate lily virus A (a putative member of the family Secoviridae), with 54.6 and 27.7 % identity, respectively. This virus is thus likely to be a new member of the family Secoviridae, and we propose the tentative name "dioscorea mosaic-associated virus" (DMaV) for this virus.


Subject(s)
Dioscorea/virology , Genome, Viral , Plant Viruses/isolation & purification , RNA Viruses/isolation & purification , RNA, Viral/genetics , Sequence Analysis, DNA , Brazil , Cluster Analysis , Open Reading Frames , Phylogeny , Plant Diseases/virology , Plant Viruses/classification , Plant Viruses/genetics , RNA Viruses/classification , RNA Viruses/genetics , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...