Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Eng ; 67: 216-226, 2021 09.
Article in English | MEDLINE | ID: mdl-34229079

ABSTRACT

In order to make renewable fuels and chemicals from microbes, new methods are required to engineer microbes more intelligently. Computational approaches, to engineer strains for enhanced chemical production typically rely on detailed mechanistic models (e.g., kinetic/stoichiometric models of metabolism)-requiring many experimental datasets for their parameterization-while experimental methods may require screening large mutant libraries to explore the design space for the few mutants with desired behaviors. To address these limitations, we developed an active and machine learning approach (ActiveOpt) to intelligently guide experiments to arrive at an optimal phenotype with minimal measured datasets. ActiveOpt was applied to two separate case studies to evaluate its potential to increase valine yields and neurosporene productivity in Escherichia coli. In both the cases, ActiveOpt identified the best performing strain in fewer experiments than the case studies used. This work demonstrates that machine and active learning approaches have the potential to greatly facilitate metabolic engineering efforts to rapidly achieve its objectives.


Subject(s)
Machine Learning , Metabolic Engineering , Escherichia coli/genetics , Phenotype
2.
PLoS Comput Biol ; 16(8): e1008137, 2020 08.
Article in English | MEDLINE | ID: mdl-32804944

ABSTRACT

Genome-scale metabolic models have been utilized extensively in the study and engineering of the organisms they describe. Here we present the analysis of a published dataset from pooled transposon mutant fitness experiments as an approach for improving the accuracy and gene-reaction associations of a metabolic model for Zymomonas mobilis ZM4, an industrially relevant ethanologenic organism with extremely high glycolytic flux and low biomass yield. Gene essentiality predictions made by the draft model were compared to data from individual pooled mutant experiments to identify areas of the model requiring deeper validation. Subsequent experiments showed that some of the discrepancies between the model and dataset were caused by polar effects, mis-mapped barcodes, or mutants carrying both wild-type and transposon disrupted gene copies-highlighting potential limitations inherent to data from individual mutants in these high-throughput datasets. Therefore, we analyzed correlations in fitness scores across all 492 experiments in the dataset in the context of functionally related metabolic reaction modules identified within the model via flux coupling analysis. These correlations were used to identify candidate genes for a reaction in histidine biosynthesis lacking an annotated gene and highlight metabolic modules with poorly correlated gene fitness scores. Additional genes for reactions involved in biotin, ubiquinone, and pyridoxine biosynthesis in Z. mobilis were identified and confirmed using mutant complementation experiments. These discovered genes, were incorporated into the final model, iZM4_478, which contains 747 metabolic and transport reactions (of which 612 have gene-protein-reaction associations), 478 genes, and 616 unique metabolites, making it one of the most complete models of Z. mobilis ZM4 to date. The methods of analysis that we applied here with the Z. mobilis transposon mutant dataset, could easily be utilized to improve future genome-scale metabolic reconstructions for organisms where these, or similar, high-throughput datasets are available.


Subject(s)
Genetic Fitness/genetics , Genome, Bacterial/genetics , Models, Genetic , Mutation/genetics , Zymomonas , Anaerobiosis , Metabolic Engineering , Zymomonas/genetics , Zymomonas/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...