Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Aust Endod J ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963178

ABSTRACT

To evaluate the effects of the association of host defence peptide IDR-1002 and ciprofloxacin on human dental pulp cells (hDPSCs). hDPSCs were stimulated with ciprofloxacin and IDR-1002. Cell viability (by MTT assay), migration capacity (by scratch assay), production of inflammatory and anti-inflammatory mediators by hDPSCs (RT-PCR) and osteogenic differentiation (alizarin red staining) were evaluated. Phenotypic profile of hDPSCs demonstrated 97% for positive marked mesenchymal stem cell. Increased pulp cell migration and proliferation were observed after 24 and 48 h of exposure to IDR-1002 with ciprofloxacin. Mineral matrix formation by hDPSCs was observed of the association while its reduction was observed in the presence of peptide. After 24 h, the association between ciprofloxacin and IDR-1002 significantly downregulated TNFRSF-1, IL-1ß, IL-8, IL-6 and IL-10 gene expression (p ≤ 0.0001). The association between the IDR-1002 and ciprofloxacin showed favourable immunomodulatory potential, emerging as a promising option for pulp revascularisation processes.

2.
Int J Mol Sci ; 25(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38999961

ABSTRACT

Skin wound healing is coordinated by a delicate balance between proinflammatory and anti-inflammatory responses, which can be affected by opportunistic pathogens and metabolic or vascular diseases. Several antimicrobial peptides (AMPs) possess immunomodulatory properties, suggesting their potential to support skin wound healing. Here, we evaluated the proregenerative activity of three recently described AMPs (Clavanin A, Clavanin-MO, and Mastoparan-MO). Human primary dermal fibroblasts (hFibs) were used to determine peptide toxicity and their capacity to induce cell proliferation and migration. Furthermore, mRNA analysis was used to investigate the modulation of genes associated with skin regeneration. Subsequently, the regenerative potential of the peptides was further confirmed using an ex vivo organotypic model of human skin (hOSEC)-based lesion. Our results indicate that the three molecules evaluated in this study have regenerative potential at nontoxic doses (i.e., 200 µM for Clavanin-A and Clavanin-MO, and 6.25 µM for Mastoparan-MO). At these concentrations, all peptides promoted the proliferation and migration of hFibs during in vitro assays. Such processes were accompanied by gene expression signatures related to skin regenerative processes, including significantly higher KI67, HAS2 and CXCR4 mRNA levels induced by Clavanin A and Mastoparan-MO. Such findings translated into significantly accelerated wound healing promoted by both Clavanin A and Mastoparan-MO in hOSEC-based lesions. Overall, the data demonstrate the proregenerative properties of these peptides using human experimental skin models, with Mastoparan-MO and Clavanin A showing much greater potential for inducing wound healing compared to Clavanin-MO.


Subject(s)
Cell Movement , Cell Proliferation , Fibroblasts , Regeneration , Skin , Wound Healing , Humans , Wound Healing/drug effects , Skin/metabolism , Skin/drug effects , Cell Proliferation/drug effects , Cell Movement/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Regeneration/drug effects , Intercellular Signaling Peptides and Proteins/metabolism , Antimicrobial Peptides/pharmacology , Cells, Cultured , Peptides/pharmacology
3.
Int J Sports Med ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38897226

ABSTRACT

Emerging evidence suggests that resistance training (RT) can mitigate respiratory muscle weakness in hemodialysis (HD) patients. However, the underlying mechanisms responsible for these beneficial effects remain unclear. The purpose of this study was to assess the impact of periodized RT on respiratory muscle strength and its relationship with handgrip strength (HGS), fat-free mass (FFM), nitric oxide (NO), and interdialytic weight gain (IWG) in HD patients. Thirty-three patients were randomly assigned to two groups: control (CTL; n=18) and RT (n=15). RT group did not perform any additional exercise training specific to the respiratory tract. Maximal inspiratory (MIP) and expiratory (MEP) pressures, peak expiratory flow (PEF), HGS, FFM, NO, and IWG were measured before and after the intervention period. Participants in the RT group engaged in a 24-week RT program, three times per week. RT resulted in significant improvements in MIP, MEP, PEF, as well as enhancements in HGS, FFM, NO, and IWG (p<0.05). Notably, inverse correlations were observed between MIP (r= -0.37, p=0.03) and PEF (r= -0.4, p=0.02) with IWG. Thus, the amelioration of HGS and FFM coincided with a reduction in respiratory muscle weakness among HD patients. Decreased IWG and increased circulating NO are plausible mechanisms contributing to these improvements.

5.
Nutrients ; 16(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674931

ABSTRACT

Populational aging is marked by chronic noncommunicable diseases, such as metabolic syndrome (MetS). IL-10 and IL-1ß are pleiotropic cytokines with multiple biological effects linked to metabolic disorders. This cross-sectional study assessed 193 participants' IL-10 and IL-1ß serum levels regarding their role in developing MetS, clinical characteristics, and their IL1B rs1143627 and IL10 rs1800890 variants' genotype frequencies in a population over 60. IL-10 levels correlated weakly with HDL levels and fat mass and inversely with triglycerides, glucose, glycated hemoglobin, and estimated average blood glucose levels. IL-10 levels were also indirectly influenced by the patient's T2DM duration, lean mass amount, and bone mineral content. Participants with altered HDL, elevated serum glucose, raised HbA1c levels, or those over 80 had reduced serum IL-10 levels compared to those with normal levels or other age groups, respectively. Women also had higher serum IL-10 levels than men. Dissimilarly, IL-1ß levels correlated directly only with the number of total leukocytes and segmented neutrophils, showing only significant variations with self-reported alcohol consumption. Our study also found that those with the IL10 AA genotype (lower IL-10 levels) had a significantly higher risk of developing MetS. These findings may help direct future research and more targeted therapeutic approaches in older adults.


Subject(s)
Interleukin-10 , Interleukin-1beta , Metabolic Syndrome , Humans , Interleukin-10/blood , Interleukin-10/genetics , Male , Metabolic Syndrome/blood , Metabolic Syndrome/genetics , Female , Interleukin-1beta/blood , Interleukin-1beta/genetics , Aged , Cross-Sectional Studies , Middle Aged , Aged, 80 and over , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/blood , Genotype , Genetic Variation , Polymorphism, Single Nucleotide , Blood Glucose/metabolism , Blood Glucose/analysis , Glycated Hemoglobin/metabolism , Glycated Hemoglobin/analysis
6.
J Sport Health Sci ; 13(4): 548-558, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38431193

ABSTRACT

BACKGROUND: Hemodialysis (HD) per se is a risk factor for thrombosis. Considering the growing body of evidence on blood-flow restriction (BFR) exercise in HD patients, identification of possible risk factors related to the prothrombotic agent D-dimer is required for the safety and feasibility of this training model. The aim of the present study was to identify risk factors associated with higher D-dimer levels and to determine the acute effect of resistance exercise (RE) with BFR on this molecule. METHODS: Two hundred and six HD patients volunteered for this study (all with a glomerular filtration rate of <15 mL/min/1.73 m2). The RE + BFR session consisted of 50% arterial occlusion pressure during 50 min sessions of HD (intradialytic exercise). RE repetitions included concentric and eccentric lifting phases (each lasting 2 s) and were supervised by a strength and conditioning specialist. RESULTS: Several variables were associated with elevated levels of D-dimer, including higher blood glucose, citrate use, recent cardiovascular events, recent intercurrents, higher inflammatory status, catheter as vascular access, older patients (>70 years old), and HD vintage. Furthermore, RE + BFR significantly increases D-dimer after 4 h. Patients with borderline baseline D-dimer levels (400-490 ng/mL) displayed increased risk of elevating D-dimer over the normal range (≥500 ng/mL). CONCLUSION: These results identified factors associated with a heightened prothrombotic state and may assist in the screening process for HD patients who wish to undergo RE + BFR. D-dimer and/or other fibrinolysis factors should be assessed at baseline and throughout the protocol as a precautionary measure to maximize safety during RE + BFR.


Subject(s)
Fibrin Fibrinogen Degradation Products , Renal Dialysis , Resistance Training , Thrombosis , Humans , Renal Dialysis/adverse effects , Resistance Training/methods , Fibrin Fibrinogen Degradation Products/analysis , Fibrin Fibrinogen Degradation Products/metabolism , Male , Thrombosis/etiology , Thrombosis/blood , Female , Middle Aged , Aged , Risk Factors , Blood Glucose/metabolism , Regional Blood Flow , Age Factors
7.
Front Vet Sci ; 10: 1215722, 2023.
Article in English | MEDLINE | ID: mdl-37496752

ABSTRACT

Introduction: The aim of this study was to evaluate potential effects of diflubenzuron on the production and quality of gametes, and on in vitro embryo production (IVEP) outcomes, in cattle. Methods: Two experiments were performed, the first to evaluate effects on semen, and the second on cumulus-oocyte complexes (COC) and on IVEP. Nelore (Bos taurus indicus) bulls (n = 14) or heifers (n = 16) were allocated into control (CG) or treatment (DIF) groups. All groups received a mineral mix supplement added (DIF) or not (CG) with diflubenzuron (30 mg/head/day), during 8 weeks. Animals were weighed and blood samples were collected throughout the experimental period. Every other week, bulls were subjected to semen collection and heifers to transvaginal ultrasound-guided follicle aspiration sessions. Semen underwent physical and morphological evaluation, and samples were stored for further computer-assisted sperm analysis. The COC recovered were evaluated according to morphology and those classified as viable were sent to an IVEP laboratory. Results: Diflubenzuron had no effect (P > 0.05) on average body weight or in any blood hematological or biochemical endpoints, regardless of gender. In experiment 1, there was no difference (P > 0.05) between DIF and CG groups for sperm concentration, morphology, or kinetics. In experiment 2, there was also no effect of diflubenzuron on the number of total, viable, or grade I oocytes, as well as on cleavage or blastocyst rates (P > 0.05). Discussion: In summary, the oral administration of diflubenzuron, within the recommended dose, has no short-term negative effects on sperm production and quality or on oocyte yield and developmental potential in vitro, in cattle.

8.
Sci Rep ; 13(1): 9531, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37308525

ABSTRACT

Host Defense Peptides (HDPs) have, in previous studies, been demonstrating antimicrobial, anti-inflammatory, and immunomodulatory capacity, important factors in the repair process. Knowing these characteristics, this article aims to evaluate the potential of HDPs IDR1018 and DJK-6 associated with MTA extract in the repair process of human pulp cells. Antibacterial activity of HDPs, MTA and HDPs combined with MTA in Streptococcus mutans planktonic bacteria and antibiofilm activity was evaluated. Cell toxicity was assayed with MTT and cell morphology was observed by scanning electron microscopy (SEM). Proliferation and migration of pulp cells were evaluated by trypan blue and wound healing assay. Inflammatory and mineralization related genes were evaluated by qPCR (IL-6, TNFRSF, DSPP, TGF-ß). Alkaline phosphatase, phosphate quantification and alizarin red staining were also verified. The assays were performed in technical and biological triplicate (n = 9). Results were submitted for the calculation of the mean and standard deviation. Then, normality verification by Kolmogorov Smirnov test, analyzing one-way ANOVA. Analyses were considered at a 95% significance level, with a p-value < 0.05. Our study demonstrated that HDPs combined with MTA were able to reduce biofilms performed in 24 h and biofilm performed over 7 days S. mutans biofilm (p < 0.05). IDR1018 and MTA, as well as their combination, down-regulated IL-6 expression (p < 0.05). Tested materials were not cytotoxic to pulp cells. IDR1018 induced high cell proliferation and combined with MTA induced high cellular migration rates in 48 h (p < 0.05). Furthermore, the combination of IDR1018 and MTA also induced high expression levels of DSPP, ALP activity, and the production of calcification nodules. So, IDR-1018 and its combination with MTA could assist in pulp-dentine complex repair process in vitro.


Subject(s)
Calcinosis , Dental Pulp , Humans , Interleukin-6 , Antimicrobial Cationic Peptides , Alkaline Phosphatase , Analysis of Variance
9.
J Fungi (Basel) ; 9(2)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36836338

ABSTRACT

Chromoblastomycosis (CBM) is a disease caused by several dematiaceous fungi from different genera, and Fonsecaea is the most common which has been clinically isolated. Genetic transformation methods have recently been described; however, molecular tools for the functional study of genes have been scarcely reported for those fungi. In this work, we demonstrated that gene deletion and generation of the null mutant by homologous recombination are achievable for Fonsecaea pedrosoi by the use of two approaches: use of double-joint PCR for cassette construction, followed by delivery of the split-marker by biolistic transformation. Through in silico analyses, we identified that F. pedrosoi presents the complete enzymatic apparatus required for tryptophan (trp) biosynthesis. The gene encoding a tryptophan synthase trpB -which converts chorismate to trp-was disrupted. The ΔtrpB auxotrophic mutant can grow with external trp supply, but germination, viability of conidia, and radial growth are defective compared to the wild-type and reconstituted strains. The use of 5-FAA for selection of trp- phenotypes and for counter-selection of strains carrying the trp gene was also demonstrated. The molecular tools for the functional study of genes, allied to the genetic information from genomic databases, significantly boost our understanding of the biology and pathogenicity of CBM causative agents.

10.
Int Urol Nephrol ; 55(1): 157-163, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35819667

ABSTRACT

PURPOSE: To investigate the association between sarcopenia with the number of all-cause mortality, hospitalizations, and cardiovascular diseases in patients with end-stage renal disease (ESRD). METHODS: 247 patients with ESRD (women, n = 97) (66.6 ± 3.53 years) participated in this study. At baseline, all participants were measured with dual-energy X-ray absorptiometry and handgrip dynamometer and were prospectively followed up for 5 years. The European Working Group on Sarcopenia in Older People guidelines were utilized for Sarcopenia determination. Cox proportional hazard analysis adjusted for established risk factors was used to quantify the risk between Sarcopenia and all-cause mortality. RESULTS: Sixty-five participants (26%) were determined to have Sarcopenia at baseline and 38 (15%) have died during the follow-up. At baseline, Participants with Sarcopenia had lower body mass index and fat-free mass index. Moreover, through the 5-year follow-up, sarcopenic patients had higher number of cardiovascular disease (56.9% vs. 12.6%) and hospitalizations (93.8% vs. 49.5%) (all P < 0.0001). Sarcopenia was associated with significantly higher risk of mortality, [Hazard ratio = 3.3, (95% CI: 1.6-6.9), P = 0.001]. CONCLUSION: Sarcopenia may be a risk factor for hospitalizations, cardiovascular diseases, and all-cause mortality in patients with ESRD. These results provide support of the relevance in assessing sarcopenia in the clinical practice of chronic kidney disease and how muscle mass and strength may negatively impact the daily life of ESRD patients undergoing hemodialysis. Greater efforts at preventing muscle wasting and malfunctioning are needed through the worldwide healthcare system.


Subject(s)
Cardiovascular Diseases , Kidney Failure, Chronic , Sarcopenia , Humans , Female , Aged , Sarcopenia/complications , Sarcopenia/epidemiology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/complications , Hand Strength/physiology , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/therapy , Hospitalization
11.
Homeopathy ; 112(1): 40-49, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35988582

ABSTRACT

INTRODUCTION: The use of mesenchymal stem cells (MSC) in cytotoxicity tests is an in-vitro alternative model for predicting initial doses. Homeopathic medicines may stimulate the immune system to combat a pathology effectively and have been used for over two centuries. Viscum album (VA) extracts are widely used in the treatment of cancer, due to their immunomodulatory, cytotoxic and pro-apoptotic properties. OBJECTIVE: This study aimed to evaluate the in-vitro growth kinetics of canine MSC in relation to cytotoxicity, cell differentiation and expression of pluripotentiality markers, using a VA preparation at the D1D2 (1×10-1, 1×10-2 potency (VAD1D2). METHODS: MSC were obtained from adipose tissue sampled from a healthy dog that was undergoing an elective veterinary procedure and with its owner's permission. The experiments were performed in three groups: MSC treated with VAD1D2 or diluent or untreated (control). The cytotoxicity was evaluated by MTT assay. The differentiation was induced in three lineages, and apoptotic cell labeling was performed by an Annexin-V test. RESULTS: At the concentration of 10 µL/mL of VA, the number of cells after in-vitro culture was maintained when compared with the control (untreated) group. A significant and gradual decrease in cell viability was recorded as VA concentrations increased. The apoptosis analysis showed that VA at 20 µL/mL presented absolute percentages of initial apoptosis twice as high as at 10 µL/mL, which was similar to the control (untreated group). CONCLUSION: The results suggest that the use of efficient methods to assess the in-vitro cytotoxicity of VA-based homeopathic medicines using MSC lineages may predict the potential action at different concentrations. These findings demonstrated that VAD1D2 interferes with canine MSC growth kinetics.


Subject(s)
Homeopathy , Mesenchymal Stem Cells , Viscum album , Animals , Dogs , Plant Extracts/pharmacology , Kinetics
12.
Biochem Biophys Rep ; 32: 101357, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36213144

ABSTRACT

Aims: Osteosarcoma (OS) is the most common primary malignant bone sarcoma among children and adolescents. Treatment is based on neo-adjuvant and adjuvant chemotherapy, using the standard drugs cisplatin, methotrexate, doxorubicin, and ifosfamide (IFO). Due to the high capacity of tumor resistance, the current work aimed to analyze genes related to cycle control and cell differentiation in OS cells sensitive to and with induced resistance to IFO. This was to assess whether the differentiated expression of these genes may affect resistance to the drug IFO used in OS treatment, and thus establish possible biomarkers of disease progression. Materials and methods: In this work, the treatment-sensitive OS U2OS lineage was used, and the same lineage was submitted to the process of induction of IFO resistance. These cells were evaluated by MTT, migration and proliferation assays and submitted to gene expression analysis. Key findings: The results demonstrate that after induction of resistance to IFO, resistant U2OS cells show a more aggressive tumor behavior, with greater capacity for cell migration, proliferation, and invasion compared to sensitive cells. Gene analysis indicates that resistance-induced cells have differentiated expression of the genes EPB41L3, GADD45A, IER3, OXCT1, UBE2L6, UBE2A ALPL, and EFNB2. Our results suggest new perspectives on possible resistance biomarkers, especially the genes EFNB2 and EPB41L3, given that these genes have rarely been studied their expression linked to osteosarcoma. They show how the resistance induction model can be useful for studies on tumor cell behavior.

13.
Exp Gerontol ; 162: 111761, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35240260

ABSTRACT

OBJECTIVE: Investigate the effects of long-term resistance training (RT) on expression of the four selected microRNAs (miRNA or mir) and further association with biomarkers related to functional performance in older end-stage renal disease (ESRD) patients undergoing hemodialysis. METHODS: Twenty-five older hemodialysis patients (glomerular filtration rate <15 mL/min/1.73 m2 aged 68.28 ± 1.06) were recruited for the study. Patients were allocated to two groups (control, n = 12 and RT, n = 13). The RT group completed 24 weeks of training, with sessions held three times per week on alternate days. Blood samples were collected pre- and post- intervention for miRNA and biochemical assays. Results were considered significant at P < 0.05. RESULTS: RT promoted benefits in inflammatory profile, nitric oxide, sestrins-2, anthropometric data, and functional performance. Trained subjects presented a 51% decrease in miRNA-31 after intervention. In addition, miRNA-1 increased 128% after RT protocol. miRNA-1 significantly correlated with functional performance, inflammatory profile, sestrins-2, and nitric oxide (all P < 0.05). CONCLUSIONS: These results suggest that the upregulation of miRNA-1 could be associated with physiological benefits promoted by RT in hemodialysis patients, providing novel understanding for potential regulatory miRNA effects on physiological RT response. These findings might point out to strategic direction for future studies.


Subject(s)
MicroRNAs , Resistance Training , Aged , Humans , MicroRNAs/genetics , Nitric Oxide , Physical Functional Performance , Renal Dialysis , Sestrins
14.
Appl Physiol Nutr Metab ; 47(2): 183-194, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35062832

ABSTRACT

Maintenance of glycemic and lipemic homeostasis can limit the progression of diabetic kidney disease. Resistance training (RT) is effective in controlling glycemia and lipemia in kidney disease; however, the effect of RT with blood flow restriction (RT+BFR) on these metabolic factors has not been investigated. We aimed to verify if chronic (6 months) RT and RT+BFR performed by patients with stage-2 chronic kidney disease (CKD) improves their glycemic homeostasis and immunometabolic profiles. Patients with CKD under conservative treatment (n = 105 (33 females)) from both sexes were randomized into control (n = 35 (11 females); age 57.6 ± 5.2 years), RT (n = 35 (12 females); age 58.0 ± 6.2 years), and RT+BFR (n = 35 (10 females); 58.0 ± 6.4 years) groups. Chronic RT or RT+BFR (6 months) was performed 3 times per week on non-consecutive days with training loading adjusted every 2 months, RT 50%-60%-70% of 1RM, and RT+BFR 30%-40%+50% of 1RM and fixed repetition number. Renal function was estimated with the glomerular filtration rate and serum albumin level. Metabolic, hormonal, and inflammatory assessments were analyzed from blood samples. Six months of RT and RT+BFR were similarly effective in improving glucose homeostasis and hormone mediators of glucose uptake (e.g., irisin, adiponectin, and sirtuin-1), decreasing pro-inflammatory and fibrotic proteins, and attenuating the progression of estimated glomerular filtration rate. Thus, RT+BFR can be considered an additional exercise modality to be included in the treatment of patients with stage 2 chronic kidney disease. Trial registration number: U1111-1237-8231. URL: http://www.ensaiosclinicos.gov.br/rg/RBR-3gpg5w/, no. RBR-3gpg5w. Novelty: Glycemic regulation induced by resistance training prevents the progression of CKD. Chronic RT and RT+BFR promote similar changes in glycemic regulation. RT and RT+BFR can be considered as non-pharmacological tools for the treatment of CKD.


Subject(s)
Blood Flow Restriction Therapy/methods , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/therapy , Resistance Training/methods , Blood Glucose/analysis , Female , Glomerular Filtration Rate , Glycemic Control/methods , Humans , Kidney/physiopathology , Lipids/blood , Male , Middle Aged , Regional Blood Flow , Serum Albumin/analysis
15.
Int J Sports Med ; 43(1): 29-33, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34256387

ABSTRACT

Lower SIRT1 and insulin resistance are associated with accelerated telomere shortening. This study investigated whether the lifestyle of master athletes can attenuate these age-related changes and thereby slow aging. We compared insulin, SIRT1, and telomere length in highly trained male master athletes (n=52; aged 49.9±7.2 yrs) and age-matched non-athletes (n=19; aged 47.3±8.9 yrs). This is a cross-sectional study, in which all data were collected in one visit. Overnight fasted SIRT1 and insulin levels in whole blood were assessed using commercial kits. Relative telomere length was determined in leukocytes through qPCR analyses. Master athletes had higher SIRT1, lower insulin, and longer telomere length than age-matched non-athletes (p<0.05 for all). Insulin was inversely associated with SIRT1 (r=-0.38; p=0.001). Telomere length correlated positively with SIRT1 (r=0.65; p=0.001), whereas telomere length and insulin were not correlated (r=0.03; p=0.87). In conclusion, master athletes have higher SIRT1, lower insulin, and longer telomeres than age-matched non-athletes. Furthermore, SIRT1 was negatively associated with insulin and positively associated with telomere length. These findings suggest that in this sample of middle-aged participants reduced insulin, increased SIRT1 activity, and attenuation of biological aging are connected.


Subject(s)
Athletes , Insulin/blood , Longevity , Sirtuin 1 , Telomere/ultrastructure , Adult , Aging , Cross-Sectional Studies , Humans , Leukocytes , Male , Middle Aged , Sirtuin 1/genetics
16.
Oxid Med Cell Longev ; 2021: 3683796, 2021.
Article in English | MEDLINE | ID: mdl-34621463

ABSTRACT

Aerobic training (AT) promotes several health benefits that may attenuate the progression of obesity associated diabetes. Since AT is an important nitric oxide (NO-) inducer mediating kidney-healthy phenotype, the present study is aimed at investigating the effects of AT on metabolic parameters, morphological, redox balance, inflammatory profile, and vasoactive peptides in the kidney of obese-diabetic Zucker rats receiving L-NAME (N(omega)-nitro-L-arginine methyl ester). Forty male Zucker rats (6 wk old) were assigned into four groups (n = 10, each): sedentary lean rats (CTL-Lean), sedentary obese rats (CTL-Obese), AT trained obese rats without blocking nitric oxide synthase (NOS) (Obese+AT), and obese-trained with NOS block (Obese+AT+L-NAME). AT groups ran 60 min in the maximal lactate steady state (MLSS), five days/wk/8 wk. Obese+AT rats improved glycemic homeostasis, SBP, aerobic capacity, renal mitochondria integrity, redox balance, inflammatory profile (e.g., TNF-α, CRP, IL-10, IL-4, and IL-17a), and molecules related to renal NO- metabolism (klotho/FGF23 axis, vasoactive peptides, renal histology, and reduced proteinuria). However, none of these positive outcomes were observed in CTL-Obese and Obese+AT+L-NAME (p < 0.0001) groups. Although Obese+AT+L-NAME lowered BP (compared with CTL-Obese; p < 0.0001), renal damage was observed after AT intervention. Furthermore, AT training under conditions of low NO- concentration increased signaling pathways associated with ACE-2/ANG1-7/MASr. We conclude that AT represents an important nonpharmacological intervention to improve kidney function in obese Zucker rats. However, these renal and metabolic benefits promoted by AT are dependent on NO- bioavailability and its underlying regulatory mechanisms.


Subject(s)
Kidney/metabolism , Nitric Oxide/metabolism , Obesity/metabolism , Physical Conditioning, Animal , Signal Transduction/drug effects , Animals , Biological Availability , Blood Glucose/metabolism , Enzyme Inhibitors/pharmacology , Male , Mitochondria/metabolism , Models, Animal , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Oxidation-Reduction/drug effects , Rats , Rats, Zucker , Reactive Oxygen Species/metabolism
17.
Nutrients ; 13(9)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34579127

ABSTRACT

We sought to investigate the effects of resistance training (RT) combined with erythropoietin (EPO) and iron sulfate on the hemoglobin, hepcidin, ferritin, iron status, and inflammatory profile in older individuals with end-stage renal disease (ESRD). ESRD patients (n: 157; age: 66.8 ± 3.6; body mass: 73 ± 15; body mass index: 27 ± 3), were assigned to control (CTL; n: 76) and exercise groups (RT; n: 81). The CTL group was divided according to the iron treatment received: without iron treatment (CTL-none; n = 19), treated only with iron sulfate or EPO (CTL-EPO or IRON; n = 19), and treated with both iron sulfate and EPO (CTL-EPO + IRON; n = 76). The RT group followed the same pattern: (RT-none; n = 20), (RT-EPO or IRON; n = 18), and (RT-EPO + IRON; n = 86). RT consisted of 24 weeks/3 days per week at moderate intensity of full-body resistance exercises prior to the hemodialysis section. The RT group, regardless of the iron treatment, improved iron metabolism in older individuals with ESRD. These results provide some clues on the effects of RT and its combination with EPO and iron sulfate in this population, highlighting RT as an important coadjutant in ESRD-iron deficiency.


Subject(s)
Erythropoietin/therapeutic use , Kidney Failure, Chronic/therapy , Resistance Training , Aged , Ferritins/blood , Ferrous Compounds/therapeutic use , Hemoglobins/analysis , Hepcidins/blood , Humans , Inflammation/therapy , Iron/blood , Middle Aged
18.
Int Urol Nephrol ; 53(10): 2137-2147, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33609277

ABSTRACT

BACKGROUND: Sarcopenia and chronic kidney disease (CKD) have been associated with negative outcomes in older people, including inflammatory profile and anemia biomarkers. AIMS: To investigate the effects of pre-dialysis resistance training (RT) on sarcopenia, inflammatory profile, and anemia biomarkers in older patients with CKD. METHODS: A total of 107 patients with CKD (65.4 ± 3.7 years) were randomly allocated into four groups: sarcopenic RT (n = 37), non-sarcopenic RT (n = 20), sarcopenic control (n = 28), and non-sarcopenic control (n = 22). DXA and handgrip strength were used to classify sarcopenia according to EWGSOP-2. Treatment groups underwent a 24-week intervention with RT before each dialysis session, three times per week. Blood sample analysis for ferritin, hepcidin, iron availability, and inflammatory profile (TNFα, IL-6, and IL-10) was conducted. All-cause mortality was recorded over 5 years. RESULTS: Sarcopenic RT group increased iron availability after the intervention, while their counterparts decreased. Ferritin and hepcidin significantly decreased in sarcopenic RT group. RT elicited a reduction in both TNFα and IL-6, while increasing IL-10 in both intervention groups. The rate of sarcopenic subjects substantially decreased after the intervention period (from 37 to 17 in the RT group; p = 0.01). The proportion of deaths was higher (P = 0.033) for sarcopenic subjects (Controls 35.7% vs RT 29.7%) when compared to non-sarcopenic subjects (Controls 18% vs RT 10%). The proportion of deaths decreased according to the randomization group (X2 = 8.704; P < 0.1). CONCLUSIONS: The 24-week RT intervention elicited a better sarcopenia status, better inflammatory profile, and improved anemia biomarkers. Sarcopenia was associated with higher mortality rate in older patients with CKD.


Subject(s)
Anemia/complications , Inflammation/complications , Renal Insufficiency, Chronic/complications , Resistance Training , Sarcopenia/complications , Sarcopenia/therapy , Aged , Anemia/blood , Biomarkers/blood , Female , Humans , Independent Living , Inflammation/blood , Male , Middle Aged , Renal Dialysis , Renal Insufficiency, Chronic/therapy , Sarcopenia/blood , Time Factors
19.
J Strength Cond Res ; 35(6): 1693-1699, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-30640301

ABSTRACT

ABSTRACT: Aguiar, SS, Rosa, TS, Sousa, CV, Santos, PA, Barbosa, LP, Deus, LA, Rosa, EC, Andrade, RV, and Simões, HG. Influence of body fat on oxidative stress and telomere length of master athletes. J Strength Cond Res 35(6): 1693-1699, 2021-The present investigation analyzed the role of body fat and training history on biological aging of master athletes by comparing and verifying the relationships between markers of adiposity, oxidative balance, and telomere length (TL) in middle-aged runners and untrained individuals. Master athletes (sprinters and endurance runners, n = 21; 51.62 ± 8.19 years) and untrained age-matched controls (n = 11; 45.41 ± 10.34 years) had blood samples collected for biochemical and biomolecular analyzes. Pro-oxidant and antioxidant measures as well as DNA extraction were performed using commercial kits. Relative TL (T/S) was determined in leukocytes through quantitative polymerase chain reaction analyses. Master athletes had lower body fat and longer TL than untrained controls (body fat: 12.21 ± 4.14% vs. 26.03 ± 4.29%; TL: 1.10 ± 0.84 vs. 0.56 ± 0.56 T/S; p < 0.05). Furthermore, master athletes also showed a better oxidative balance than untrained controls (p < 0.05). A negative correlation was observed between TL and body fat (r = -0.471; p = 0.007), and conicity index (r = -0.407; p = 0.021), catalase activity (r = -0.569; p = 0.001), and CAT/TBARS ratio (r = -0.463; p = 0.008) for the whole sample. In conclusion, master athletes have longer TL, better oxidative profile, and lower body fat than untrained individuals. Moreover, for this middle-aged sample, body fat was inversely correlated with both TL and markers of oxidative balance, demonstrating the key role of adiposity in biological aging.


Subject(s)
Athletes , Telomere , Adipose Tissue , Aging , Humans , Middle Aged , Oxidative Stress , Telomere/genetics
20.
Int J Sports Med ; 42(3): 283-290, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32947637

ABSTRACT

Aging muscle is prone to sarcopenia and its associated telomere shortening and increased oxidative stress. Telomeres are protected by a shelterin protein complex, proteins expressed in response to DNA damage. Aerobic exercise training has shown to positively modulate these proteins while aging, but the effects of resistance training are less clear. This investigation was to examine the role of dynamic and isometric RT on markers of senescence and muscle apoptosis: checkpoint kinase 2, 53 kDa protein, shelterin telomere repeat binding 1 and 2, DNA repair, telomere length and redox state in the quadriceps muscle. Fifteen 49-week-old male rats were divided into three groups: control, dynamic resistance training, and isometric resistance training. Dynamic and isometric groups completed five sessions per week during 16 weeks at low to moderate intensity (20-70% maximal load). Only dynamic group decreased expression of 53 kDa protein, proteins from shelterin complex, oxidative stress, and improved antioxidant defense. There was no difference among groups regarding telomere length. In conclusion, dynamic resistance training was more effective than isometric in reducing markers of aging and muscle apoptosis in elderly rats. This modality should be considered as valuable tool do counteract the deleterious effects of aging.


Subject(s)
Aging/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Resistance Training/methods , Animals , Apoptosis , Biomarkers/metabolism , Checkpoint Kinase 2/metabolism , DNA Repair , Genes, p53 , Isometric Contraction , Male , Muscle, Skeletal/cytology , Oxidation-Reduction , Oxidative Stress , Physical Conditioning, Animal , Rats, Wistar , Telomere Shortening , Telomere-Binding Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...