Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Journal of Medical Entomology ; 46(1): 58-66, 2009.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1064283

ABSTRACT

Ctenus medius Keyserling, 1891 (Araneae: Ctenidae) co-occurs in various microhabitats of the Brazilian Atlantic Forest and can be easily misidentified as the medically important spider Phoneutria nigriventer Keyserling, 1981 (Ctenidae). Despite being phylogenetically close to Phoneutria, no data are available about the toxic potential of Ctenus medius venom. Here we show that, although presenting different profile of protein composition, C. medius venom displays some of the toxic properties exhibited by P. nigriventer venom, including proteolytic, hyaluronidasic and phospholipasic activities, as well as the ability of causing hyperalgesia and edema. Moreover, C. medius venom interferes in the activation of the complement system in concentrations that P. nigriventer venom is inactive. Thus, these data show that venoms of spiders from Ctenidae family share important proinflammatory properties and suggest that the C. medius bite may have an important noxious effect in human accidents.


Subject(s)
Male , Female , Humans , Child , Adolescent , Adult , Aged , Spider Venoms/poisoning , Spider Venoms/toxicity
2.
Toxicon ; 45(4): 449-458, 2005.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1068209

ABSTRACT

Loxosceles adelaida spiders (Araneae, Sicariidae) are found near and inside the caves in the Parque Estadual Turístico do Alto Ribeira (PETAR), São Paulo, Brazil, which are visited by thousands of tourists every year. Several Loxosceles species are a public health problem in many regions of the world, by causing severe dermonecrosis and/or complement dependent haemolysis upon envenomation. The aim of this study was to characterize the biochemical and biological properties of L. adelaida venom and evaluate the toxic potential of envenomation by this non-synanthropic Loxosceles species. The biological activities of the L. adelaida venom was compared to that of Loxosceles gaucho, a synanthropic species of medical importance in Brazil. L. adelaida venom showed a similar potential to induce haemolysis, dermonecrosis and lethality as L. gaucho venom. L. adelaida crude venom was purified, yielding a 31 kDa component endowed with haemolytic and dermonecrotic activities. In conclusion, we show here that the troglophile Loxosceles species, L. adelaida, commonly found in the complex of caves from PETAR, is potentially able to cause envenomation with the same gravity of those produced by synanthropic species.


Subject(s)
Animals , Spiders/classification , Poisoning
3.
Immunology ; 107(1): 93-101, sept.2002.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1063339

ABSTRACT

We have recently shown that the sphingomyelinase toxins P1 and P2 from the venom of the spider Loxosceles intermedia induce complement (C)-dependent lysis of autologous erythrocytes by induction of the cleavage of cell surface glycophorins through activation of an endogenous metalloproteinase facilitating the activation of the alternative pathway of C. Phospholipase D (PLD) from Corynebacterium pseudotuberculosis shows some degree of homology with the spider sphingomyelinases and can induce similar clinical symptoms to those observed after spider envenomation. The aim of this study was to investigate if the bacterial PLD-induced haemolysis of human erythrocytes was C dependent and if cleavage of glycophorins occurred. We show here that haemolysis of both PLD- and P1-treated human erythrocytes was C dependent, but while PLD-mediated haemolysis was dependent on activation of the classical pathway of C, P1 induced lysis via both the classical and alternative pathways. P1, but not PLD, induced cleavage of glycophorins and no change in expression of complement regulators was induced by either of the toxins. In both cases, annexin V binding sites were exposed, suggesting that the membrane asymmetry had been disturbed causing exposure of phosphatidylserine to the cell surface. Our results suggest that C susceptibility induced by L. intermedia and C. pseudotuberculosis PLD is a result of exposure of phosphatidylserine, and the higher potency of P1 toxin can be explained by its additional effect of cleavage of glycophorins.


Subject(s)
Animals , Spiders/classification , Spider Venoms/pharmacokinetics , Poisoning , Phospholipase D/analysis , Phospholipase D/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...