Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
ZooKeys ; 667: 67-94, 2017.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15528

ABSTRACT

The genus Loxosceles Heinecken & Lowe, 1832 has 91 representatives in the New World. Despite medical relevancy, the taxonomy of the genus is poorly understood. South American Loxosceles were divided into four groups of species: laeta, spadicea, gaucho and amazonica; this last one has a single species, Loxosceles amazonica Gertsch, 1967. More recently, the natural occurrence of L. amazonica in the New World has been questioned, due to the strong morphological resemblance and close phylogenetic relationship with Old World species, mainly with Loxosceles rufescens (Dufour, 1820). Herein, L. amazonica is rediagnosed and its morphological variation and natural distribution discussed. Two new species closely related to it from northeastern Brazil are also described, Loxosceles willianilsoni sp. n., from the state of Rio Grande do Norte, and Loxosceles muriciensis sp. n., from the state of Alagoas. The relationships of these new species with L. amazonica and L. rufescens are discussed.

2.
Toxins ; 9(3): 90, 2017.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15407

ABSTRACT

Envenomation by Loxosceles spider can result in two clinical manifestations: cutaneous and systemic loxoscelism, the latter of which includes renal failure. Although incidence of renal failure is low, it is the main cause of death, occurring mainly in children. The sphingomyelinase D (SMase D) is the main component in Loxosceles spider venom responsible for local and systemic manifestations. This study aimed to investigate the toxicity of L. intermedia venom and SMase D on kidney cells, using both In vitro and in vivo models, and the possible involvement of endogenous metalloproteinases (MMP). Results demonstrated that venom and SMase D are able to cause death of human kidney cells by apoptosis, concomitant with activation and secretion of extracellular matrix metalloproteases, MMP-2 and MMP-9. Furthermore, cell death and MMP synthesis and secretion can be prevented by tetracycline. In a mouse model of systemic loxoscelism, Loxosceles venom-induced kidney failure was observed, which was abrogated by administration of tetracycline. These results indicate that MMPs may play an important role in Loxosceles venom-induced kidney injury and that tetracycline administration may be useful in the treatment of human systemic loxoscelism.

4.
Immunobiology ; 221(9): p. 953-963, 2016.
Article | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14361

ABSTRACT

A transcriptome analysis of the venom glands of the spider Loxosceles laeta, performed by our group, in a previous study (Fernandes-Pedrosa et al., 2008), revealed a transcript with a sequence similar to the human complement component C3. Here we present the analysis of this transcript. cDNA fragments encoding the C3 homologue (Lox-C3) were amplified from total RNA isolated from the venom glands of L laeta by RACE-PCR. Lox-C3 is a 5178 bps cDNA sequence encoding a 190 kDa protein, with a domain configuration similar to human C3. Multiple alignments of C3-like proteins revealed two processing sites, suggesting that Lox-C3 is composed of three chains. Furthermore, the amino acids consensus sequences for the thioester was found, in addition to putative sequences responsible for FB binding. The phylogenetic analysis showed that Lox-C3 belongs to the same group as two C3 isoforms from the spider Hasarius adansoni (Family Salcitidae), showing 53% homology with these. This is the first characterization of a Loxosceles cDNA sequence encoding a human C3 homologue, and this finding, together with our previous finding of the expression of a FB-like molecule, suggests that this spider species also has a complement system. This work will help to improve our understanding of the innate immune system in these spiders and the ancestral structure of C3. (C) 2016 Elsevier GmbH. All rights reserved


Subject(s)
Toxicology , Genetics , Allergy and Immunology
5.
Toxicon ; 116: p. 35-42, 2016.
Article | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14115

ABSTRACT

Loxoscelism is caused by envenomation by spiders from Loxosceles genus. Clinical symptoms only appear a few hours after envenomation and can evolve in local reactions, such as dermonecrosis, and systemic reactions, including intravascular haemolysis, intravascular coagulation and renal failure. Considering that alterations in the microcirculatory network are involved in the pathogenesis of different diseases, including the inflammatory process, the aim of this study was to investigate the action of venoms of males and females of Loxosceles intermedia andLoxosceles laeta on the microcirculatory network and examine the systemic production of inflammatory mediators in a murine model of loxoscelism. We observed that during systemic envenomation, the alterations in the microcirculation include increase in the number of rolling cells, which was more intense in animals injected with female Loxosceles spider venoms. This positively correlated with increase in TNF-a and NO serum levels, induction of which was higher by female venoms when compared with male venoms. The increase of leukocytes rolling was not accompanied by increase of cell adhesion. The absence of leukocyte extravasation may explain why in mice, in contrast to humans, no cutaneous loxoscelism occurs. Thus, targeting the neutrophil adhesion and extravasation in Loxosceles envenomed patients may prevent cutaneous pathology. Copyright © 2015 Elsevier Ltd. All rights reserved. KEYWORDS: Inter- and intra-specific variations; Loxosceles spider venom; Microcirculation


Subject(s)
Toxicology , Allergy and Immunology , Pharmacology
6.
PLoS One ; 11(1): e0146992, 2016.
Article | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib13947

ABSTRACT

The human complement system is composed of more than 30 proteins and many of these have conserved domains that allow tracing the phylogenetic evolution. The complement system seems to be initiated with the appearance of C3 and factor B (FB), the only components found in some protostomes and cnidarians, suggesting that the alternative pathway is the most ancient. Here, we present the characterization of an arachnid homologue of the human complement component FB from the spider Loxosceles laeta. This homologue, named Lox-FB, was identified from a total RNA L. laeta spider venom gland library and was amplified using RACE-PCR techniques and specific primers. Analysis of the deduced amino acid sequence and the domain structure showed significant similarity to the vertebrate and invertebrate FB/C2 family proteins. Lox-FB has a classical domain organization composed of a control complement protein domain (CCP), a von Willebrand Factor domain (vWFA), and a serine protease domain (SP). The amino acids involved in Mg2+ metal ion dependent adhesion site (MIDAS) found in the vWFA domain in the vertebrate C2/FB proteins are well conserved; however, the classic catalytic triad present in the serine protease domain is not conserved in Lox-FB. Similarity and phylogenetic analyses indicated that Lox-FB shares a major identity (43%) and has a close evolutionary relationship with the third isoform of FB-like protein (FB-3) from the jumping spider Hasarius adansoni belonging to the Family Salcitidae


Subject(s)
Genetics , Cell Biology
7.
PLoS One ; 11(4): e0153090, 2016.
Article | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib13761

ABSTRACT

Envenomation by Loxosceles spider is characterized by the development of dermonecrosis. In previous studies, we have demonstrated that increased expression/secretion of matrix metalloproteinases 2 and 9, induced by Loxosceles intermedia venom Class 2 SMases D (the main toxin in the spider venom), contribute to the development of cutaneous loxoscelism. In the present study we show that the more potent venom containing the Class 1 SMase D from Loxosceles laeta, in addition to increasing the expression/secretion of MMP2 and MMP9, also stimulates the expression of MMP7 (Matrilysin-1), which was associated with keratinocyte cell death. Tetracycline, a matrix metalloproteinase inhibitor, prevented cell death and reduced MMPs expression. Considering that L. laeta venom is more potent at inducing dermonecrosis than L. intermedia venom, our results suggest that MMP7 may play an important role in the severity of dermonecrosis induced by L. laeta spider venom SMase D. In addition, the inhibition of MMPs by e.g. tetracyclines may be considered for the treatment of the cutaneous loxoscelism


Subject(s)
Toxicology , Allergy and Immunology , Biochemistry
13.
São Paulo, Brazil; INCTTOX; 2013. 32 p. il.
Monography in Portuguese | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib330

Subject(s)
Biodiversity
SELECTION OF CITATIONS
SEARCH DETAIL
...