Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 836: 155667, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35513142

ABSTRACT

Soil phosphorus (P) availability may limit plant growth and alter root-soil interactions and rhizosphere microbial community composition. The composition of the rhizosphere microbial community can also be shaped by plant genotype. In this study, we examined the rhizosphere microbial communities of young plants of 24 species of eucalypts (22 Eucalyptus and two Corymbia species) under low or sufficient soil P availability. The taxonomic diversity of the rhizosphere bacterial and fungal communities was assessed by 16S and 18S rRNA gene amplicon sequencing. The taxonomic modifications in response to low P availability were evaluated by principal component analysis, and co-inertia analysis was performed to identify associations between bacterial and fungal community structures and parameters related to plant growth and nutritional status under low and sufficient soil P availability. The sequencing results showed that while both soil P availability and eucalypt species influenced the microbial community assembly, eucalypt species was the stronger determinant. However, when the plants are subjected to low P-availability, the rhizosphere selection became strongest. In response to low P, the bacterial and fungal communities in the rhizosphere of some species showed significant changes, whereas in others remained relatively constant under low and sufficient P. Co-inertia analyses revealed a significant co-dependence between plant nutrient contents and bacterial and fungal community composition only under sufficient P. By contrast, under low P, bacterial community composition was related to plant biomass production. In conclusion, our study shows that eucalypt species identity was the main factor modulating rhizosphere microbial community composition; significant shifts due to P availability were observed only for some eucalypt species.


Subject(s)
Microbiota , Mycobiome , Bacteria , Fungi , Microbiota/physiology , Phosphorus , Plant Roots/microbiology , Plants , Rhizosphere , Soil/chemistry , Soil Microbiology
2.
Sci Total Environ ; 408(22): 5381-91, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20716461

ABSTRACT

Studies on mycorrhizal symbiosis effects on metal accumulation and plant tolerance are not common in perennial crops under metal stress. The objective of this study was to evaluate the influence of mycorrhization on coffee seedlings under Cu and Zn stress. Copper (Cu) and zinc (Zn) uptake and some biochemical and physiological traits were studied in thirty-week old Coffea arabica seedlings, in response to the inoculation with arbuscular mycorrhizal fungi (AMF) and to increasing concentrations of Cu or Zn in soil. The experiments were conducted under greenhouse conditions in a 2×4 factorial design (inoculation or not with AMF and 0, 50, 150 and 450mgkg(-1) Cu or 0, 100, 300 and 900mgkg(-1) Zn). Non-mycorrhizal plants maintained a hampered and slow growth even in a soil with appropriate phosphorus (P) levels for this crop. As metal levels increased in soil, a greater proportion of the total absorbed metals were retained by roots. Foliar Cu concentrations increased only in non-mycorrhizal plants, reaching a maximum concentration of 30mgkg(-1) at the highest Cu in soil. Mycorrhization prevented the accumulation of Cu in leaves, and mycorrhizal plants showed higher Cu contents in stems, which indicated a differential Cu distribution in AMF-associated or non-associated plants. Zn distribution and concentrations in different plant organs followed a similar pattern independently of mycorrhization. In mycorrhizal plants, only the highest metal concentrations caused a reduction in biomass, leading to significant changes in some biochemical indicators, such as malondialdehyde, proline and amino acid contents in leaves and also in foliar free amino acid composition. Marked differences in these physiological traits were also found due to mycorrhization. In conclusion, AMF protected coffee seedlings against metal toxicity.


Subject(s)
Coffea/metabolism , Copper/metabolism , Mycorrhizae/metabolism , Soil Pollutants/metabolism , Symbiosis , Zinc/metabolism , Amino Acids/metabolism , Coffea/drug effects , Coffea/microbiology , Copper/toxicity , Crops, Agricultural/drug effects , Crops, Agricultural/metabolism , Crops, Agricultural/microbiology , Dose-Response Relationship, Drug , Lipid Peroxidation/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/microbiology , Seedlings/drug effects , Seedlings/metabolism , Soil Pollutants/toxicity , Stress, Physiological , Zinc/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...