ABSTRACT
During bacterial and viral pathogen investigation of 30 specimens of bats captured in periurban forest areas in the city of Belém, Pará, Brazil, a case of cerebral filariasis was observed. In the course of histopathological examination, adult filariae were found in pseudocystic cavities brain of Molossus barnesi (Molossidae) and classified morphologically as Litomosoides by the shape of the spicules-left spicule with a handle longer than the blade; right spicule curved, with a sclerotized heel supporting a dorsal notch; the area rugosa constituted by a ventral band of small longitudinal crests; tail rounded in males; long esophagus with a slightly glandular distal portion; and a muscular bent vagina. All the specimens lack a stoma (buccal capsule). We compared our filarioids with the description of specimens of Molossinema wimsatti. Morphological characteristics of M. wimsatti resemble the genus Litomosoides. Thus, we believe that M. wimsatti is a synonym of L. molossi Esslinger, 1973, and filarioid specimens from material reported by Lichtenfels et al. (Trans Am Micros Soc 100:216-219, 1981) and from de Souto et al. (J. Helminthol 1195:e65, 2021) most probably correspond to Litomosoides. We suggest that the reduction of the buccal capsule may be attributable to the ectopic location. No evidence of tissue responses by the host was observed. This is the first record of Litomosoides infecting brain tissue of Molossus barnesi from Brazil, representing a record of a new host species. More specimens of bats should be examined in order to find filarioids in the brain and verify its taxonomic position using molecular techniques.
Subject(s)
Chiroptera , Filariasis , Filarioidea , Animals , Female , Male , Brazil , Environment , Filariasis/veterinaryABSTRACT
Varronia multispicata (Cham.) Borhidi (Cordiaceae), an herbaceous plant distributed in tropical and subtropical regions is native of Brazil and widely used in folk medicine to treat respiratory and digestive diseases, inflammation, and some types of infections. Thus, this study aimed to investigate acute oral toxicity, antinociceptive, and anti-inflammatory activities of dry aqueous extract of V. multispicata (AEVm) and to identify its compounds. Extract was obtained by lyophilized leaf infusion and its composition was analyzed by ultra-performance liquid chromatography-high resolution mass spectrometry (LC-MS). Acute oral toxicity was evaluated in female rats treated with AEVm (2,000 mg/kg) in a single oral dose. Mortality, body weight changes, feed and water intake, organ weights, histological and biochemical parameters were screened for 14 days. Antinociceptive activity was evaluated by writhing (WT), formalin (FT), and hot plate (HP) tests in male mice while anti-inflammatory activity was performed by carrageenan (CPE) and dextran (DPE)-induced paw edema tests and carrageenan-induced peritonitis (CP) test in male rats. Additionally, spontaneous open-field (OF) locomotion was evaluated. LC-MS analysis revealed the presence of flavonoids with biological activity. In toxicity evaluation, extract did not cause deaths in dose of 2,000 mg/kg, and there were no significant behavioral or biochemical alterations. Additionally, evidence of hepatoprotective and antioxidant activity was observed. In pharmacological evaluation AEVm showed dose-dependent antinociceptive activity in WT, with a median effective dose of 146.89 mg/kg, which showed selectivity by inflammatory base processes (FT first phase; p < 0.001), showing no activity in neuropathic nociception components (FT second phase and HP) or about consciousness and locomotion in OF. AEVm also showed significant anti-inflammatory activity, inhibiting CPE (p < 0.001) and cell migration (p < 0.05) and nitric oxide (NO) production (p < 0,01) in CP test. These data demonstrate that AEVm has low oral toxicity-with evidence of hepatoprotective and antioxidant properties-antinociceptive and anti-inflammatory activity, supporting V. multispicata traditional use, possibly related to flavonoids present in its constitution.