Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38980488

ABSTRACT

The rapid increase in aquaculture over the last several decades has led to concerns about the environmental impact of fish feeds relying on marine resources for fishmeal (FM). We aim to assess Nannochloropsis sp. QH25 co-product as a viable and sustainable replacement for FM in juvenile rainbow trout, Oncorhynchus mykiss, feeds. We formulated four experimental diets: a reference (FM based), 33N, 66N, and 100N diet (33%, 66%, and 100% co-product replacement). Rainbow trout were randomly assigned to one of 16 tanks and randomly assigned an experimental diet to consume throughout the experiment (64 days total), with four replicate tanks per diet. We compared the phosphorus (P) and nitrogen (N) digestibility, emissions, and growth between diets and, compared six environmental impacts (biotic resource use (BRU), global warming potential (GWP), water use, land use, marine eutrophication potential (MEP), and freshwater eutrophication potential (FEP)) of each diet. Our results indicate that replacing FM with co-product did not significantly alter growth. P digestibility of the experimental and reference diets was comparable. BRU conversion ratio was significantly lower in the experimental diets. However, there were significantly higher water and land use conversion ratios but insignificantly higher results in GWP, MEP, and FEP between the reference and 100N diet.

2.
Insects ; 14(7)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37504583

ABSTRACT

(1) Urbanization threatens biodiversity, yet urban native plants support native biodiversity, contributing to conservation and ecosystem services. Within urban agroecosystems, where non-native plants are abundant, native plants may boost the abundance and richness of beneficial arthropods. Nevertheless, current information focuses on pollinators, with little attention being paid to other beneficials, like natural enemies. (2) We examined how the species richness of native plants, garden management, and landscape composition influence the abundance and species richness of all, native, and non-native bees, ladybeetles, ants, and ground-foraging spiders in urban agroecosystems (i.e., urban community gardens) in California. (3) We found that native plants (~10% of species, but only ~2.5% of plant cover) had little influence on arthropods, with negative effects only on non-native spider richness, likely due to the low plant cover provided by native plants. Garden size boosted native and non-native bee abundance and richness and non-native spider richness; floral abundance boosted non-native spider abundance and native and non-native spider richness; and mulch cover and tree and shrub abundance boosted non-native spider richness. Natural habitat cover promoted non-native bee and native ant abundance, but fewer native ladybeetle species were observed. (4) While native plant richness may not strongly influence the abundance and richness of beneficial arthropods, other garden management features could be manipulated to promote the conservation of native organisms or ecosystem services provided by native and non-native organisms within urban agroecosystems.

SELECTION OF CITATIONS
SEARCH DETAIL
...