Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Public Health ; 2022: 4968739, 2022.
Article in English | MEDLINE | ID: mdl-35726323

ABSTRACT

Aim: Heavy metal concentration [mg/dL, MP] in soil and the transfer to vegetable organs may have a sampling effect. We compared the [MP] in soil and organ samples of Beta vulgaris collected in sites with socioeconomic differences potentially inducing phytotoxicity. Materials and Methods: Samples of Beta vulgaris and soils (n = 4 per sample of soil and plant material) were randomly collected from two distant geographic areas (Mosquera and Sibaté, Cundinamarca, Colombia). We determined the [MP] using acid digestion of HCl : HNO3 [1 : 1]; the [MP] was obtained by atomic absorption in Varian AA-140 and Shimadzu AA-7000 equipment. A two-way ANOVA estimated the effect (partial η2) of the sampling site and metal type on the [MP] and transfer to the vegetable. Results: In Sibaté, the means (SD) of As_1.44 (0.18), Co_1.09 (0.51), Cr_6.21 (0.33), Ni_0.22 (0.02), and Pb_4.17 (0.87) were higher than in Mosquera (As_1.06 (0.21), Co_0.81 (0.19), Cr_3.72 (0.51), Ni_0.13 (0.04), and Pb_1.69 (0.40)) (p value <0.05). The effect of the interaction between the metal type and Beta vulgaris organs on the [MP] (0.801) in Sibaté was more meaningful than in Mosquera (0.430). Additionally, there was a strong correlation (Spearman's ρ > 0.8, p value <0.001) between [MP_soil] and [MP_plants] and between the transfer of metals to the plant and to the leaves. Discussion. The sampling location has a differential effect on the [MP] in soil and the transfer to Beta vulgaris. Given the differential effect described, the monitoring and phytoremediation strategies must be adjusted to scenarios with potentially phytotoxic conditions.


Subject(s)
Beta vulgaris , Metals, Heavy , Soil Pollutants , Environmental Monitoring , Lead , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis , Vegetables
2.
Heliyon ; 6(7): e04212, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32642577

ABSTRACT

Heavy metal contamination in water resources, soil, and food sources is an issue that compromises food safety in Sibaté, Colombia. In the present study concentration of heavy metals [HMs], such as Cu, As, Pb, Cr, Zn, Co, Cd and Ni, present in vegetables included in the typical Colombian diet were measured. The study was conducted as follows: samples of parsley, artichoke and carrots produced in a location near the Muña dam were collected, where the Bogotá River water is treated for use as a water resource. To determine food safety, national and international [HMs] established limits were compared with quantified [HMs] in samples of different vegetable parts and of the surrounding soil. Fresh samples were separated in their respective parts for cold acid digestion with HCl and HNO3 (1:1) for 15 days. Heavy metal mean ± standard error (SE) were as follows (mg/kg) As 2.36 ± 0.185, Cd 0.16 ± 0.009, Co 0.43 ± 0.019, Cr 12.1 ± 0.453, Cu 13.1 ± 1.68, Ni 0.00, Pb 7.07 ± 0.482 and Zn 3.976 ± 0.332. Cd, Cr, As, Co and Ni showed high transfer factor in Cynara scolymus. Moreover, high Pb, Cu and Zn transfer factor were present in Petroselinum crispum. Except for Daucus carota roots, there was a high metal transfer specifically in Petroselinum crispum leaves and other different plant parts, with high transfer factor for Cr, As, Co, Pb, Cu and Zn.

SELECTION OF CITATIONS
SEARCH DETAIL
...