Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37176162

ABSTRACT

Thalassophryne nattereri toadfish (niquim) envenomation, common in the hands and feet of bathers and fishermen in the north and northeast regions of Brazil, is characterized by local symptoms such as immediate edema and intense pain. These symptoms progress to necrosis that lasts for an extended period of time, with delayed healing. Wound healing is a complex process characterized by the interdependent role of keratinocytes, fibroblasts, and endothelial and innate cells such as neutrophils and macrophages. Macrophages and neutrophils are actively recruited to clear debris during the inflammatory phase of wound repair, promoting the production of pro-inflammatory mediators, and in the late stage, macrophages promote tissue repair. Our hypothesis is that injury caused by T. nattereri venom (VTn) leads to senescent wounds. In this study, we provide valuable information about the mechanism(s) behind the dysregulated inflammation in wound healing induced by VTn. We demonstrate in mouse paws injected with the venom the installation of γH2AX/p16Ink4a-dependent senescence with persistent neutrophilic inflammation in the proliferation and remodeling phases. VTn induced an imbalance of M1/M2 macrophages by maintaining a high number of TNF-α-producing M1 macrophages in the wound but without the ability to eliminate the persistent neutrophils. Chronic neutrophilic inflammation and senescence were mediated by cytokines such as IL-1α and IL-1ß in a caspase-1- and caspase-11-dependent manner. In addition, previous blocking with anti-IL-1α and anti-IL-ß neutralizing antibodies and caspase-1 (Ac YVAD-CMK) and caspase-11 (Wedelolactone) inhibitors was essential to control the pro-inflammatory activity of M1 macrophages induced by VTn injection, skewing towards an anti-inflammatory state, and was sufficient to block neutrophil recruitment and senescence.


Subject(s)
Fish Venoms , Venoms , Mice , Animals , Fish Venoms/pharmacology , Inflammasomes , Inflammation/chemically induced , Neutrophils , Caspase 1
2.
Int J Mol Sci, v. 24, n. 9, 8453, mai. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4906

ABSTRACT

Thalassophryne nattereri toadfish (niquim) envenomation, common in the hands and feet of bathers and fishermen in the north and northeast regions of Brazil, is characterized by local symptoms such as immediate edema and intense pain. These symptoms progress to necrosis that lasts for an extended period of time, with delayed healing. Wound healing is a complex process characterized by the interdependent role of keratinocytes, fibroblasts, and endothelial and innate cells such as neutrophils and macrophages. Macrophages and neutrophils are actively recruited to clear debris during the inflammatory phase of wound repair, promoting the production of pro-inflammatory mediators, and in the late stage, macrophages promote tissue repair. Our hypothesis is that injury caused by T. nattereri venom (VTn) leads to senescent wounds. In this study, we provide valuable information about the mechanism(s) behind the dysregulated inflammation in wound healing induced by VTn. We demonstrate in mouse paws injected with the venom the installation of γH2AX/p16Ink4a-dependent senescence with persistent neutrophilic inflammation in the proliferation and remodeling phases. VTn induced an imbalance of M1/M2 macrophages by maintaining a high number of TNF-α-producing M1 macrophages in the wound but without the ability to eliminate the persistent neutrophils. Chronic neutrophilic inflammation and senescence were mediated by cytokines such as IL-1α and IL-1β in a caspase-1- and caspase-11-dependent manner. In addition, previous blocking with anti-IL-1α and anti-IL-β neutralizing antibodies and caspase-1 (Ac YVAD-CMK) and caspase-11 (Wedelolactone) inhibitors was essential to control the pro-inflammatory activity of M1 macrophages induced by VTn injection, skewing towards an anti-inflammatory state, and was sufficient to block neutrophil recruitment and senescence.

3.
Int J Mol Sci ; 23(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35408954

ABSTRACT

Natterin is a potent pro-inflammatory fish molecule, inducing local and systemic IL-1ß/IL-1R1-dependent neutrophilia mediated by non-canonical NLRP6 and NLRC4 inflammasome activation in mice, independent of NLRP3. In this work, we investigated whether Natterin activates mitochondrial damage, resulting in self-DNA leaks into the cytosol, and whether the DNA sensor cGAS and STING pathway participate in triggering the innate immune response. Employing a peritonitis mouse model, we found that the deficiency of the tlr2/tlr4, myd88 and trif results in decreased neutrophil influx to peritoneal cavities of mice, indicative that in addition to MyD88, TRIF contributes to neutrophilia triggered by TLR4 engagement by Natterin. Next, we demonstrated that gpcr91 deficiency in mice abolished the neutrophil recruitment after Natterin injection, but mice pre-treated with 2-deoxy-d-glucose that blocks glycolysis presented similar infiltration than WT Natterin-injected mice. In addition, we observed that, compared with the WT Natterin-injected mice, DPI and cyclosporin A treated mice had a lower number of neutrophils in the peritoneal exudate. The levels of dsDNA in the supernatant of the peritoneal exudate and processed IL-33 in the supernatant of the peritoneal exudate or cytoplasmic supernatant of the peritoneal cell lysate of WT Natterin-injected mice were several folds higher than those of the control mice. The recruitment of neutrophils to peritoneal cavity 2 h post-Natterin injection was intensely impaired in ifnar KO mice and partially in il-28r KO mice, but not in ifnγr KO mice. Finally, using cgas KO, sting KO, or irf3 KO mice we found that recruitment of neutrophils to peritoneal cavities was virtually abolished in response to Natterin. These findings reveal cytosolic DNA sensors as critical regulators for Natterin-induced neutrophilia.


Subject(s)
Myeloid Differentiation Factor 88 , Toll-Like Receptor 4 , Adaptor Proteins, Vesicular Transport/metabolism , Animals , DNA , Fish Venoms , Membrane Proteins/metabolism , Mice , Myeloid Differentiation Factor 88/metabolism , Nucleotidyltransferases/metabolism , Pore Forming Cytotoxic Proteins , Signal Transduction , Toll-Like Receptor 4/metabolism
4.
Int J Mol Sci, v. 23, n. 7, 3600, mar. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4295

ABSTRACT

Natterin is a potent pro-inflammatory fish molecule, inducing local and systemic IL-1β/IL-1R1-dependent neutrophilia mediated by non-canonical NLRP6 and NLRC4 inflammasome activation in mice, independent of NLRP3. In this work, we investigated whether Natterin activates mitochondrial damage, resulting in self-DNA leaks into the cytosol, and whether the DNA sensor cGAS and STING pathway participate in triggering the innate immune response. Employing a peritonitis mouse model, we found that the deficiency of the tlr2/tlr4, myd88 and trif results in decreased neutrophil influx to peritoneal cavities of mice, indicative that in addition to MyD88, TRIF contributes to neutrophilia triggered by TLR4 engagement by Natterin. Next, we demonstrated that gpcr91 deficiency in mice abolished the neutrophil recruitment after Natterin injection, but mice pre-treated with 2-deoxy-d-glucose that blocks glycolysis presented similar infiltration than WT Natterin-injected mice. In addition, we observed that, compared with the WT Natterin-injected mice, DPI and cyclosporin A treated mice had a lower number of neutrophils in the peritoneal exudate. The levels of dsDNA in the supernatant of the peritoneal exudate and processed IL-33 in the supernatant of the peritoneal exudate or cytoplasmic supernatant of the peritoneal cell lysate of WT Natterin-injected mice were several folds higher than those of the control mice. The recruitment of neutrophils to peritoneal cavity 2 h post-Natterin injection was intensely impaired in ifnar KO mice and partially in il-28r KO mice, but not in ifnγr KO mice. Finally, using cgas KO, sting KO, or irf3 KO mice we found that recruitment of neutrophils to peritoneal cavities was virtually abolished in response to Natterin. These findings reveal cytosolic DNA sensors as critical regulators for Natterin-induced neutrophilia.

5.
Int Immunopharmacol ; 91: 107287, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33378723

ABSTRACT

Natterin is an aerolysin-like pore-forming toxin responsible for the toxic effects of the venom of the medically significant fish Thalassophryne nattereri. Using a combination of pharmacologic and genetic loss-of-function approaches we conduct a systematic investigation of the regulatory mechanisms that control Natterin-induced neutrophilic inflammation in the peritonitis model. Our data confirmed the capacity of Natterin to induce a strong and sustained neutrophilic inflammation leading to systemic inflammatory lung infiltration and revealed overlapping regulatory paths in its control. We found that Natterin induced the extracellular release of mature IL-1ß and the sustained production of IL-33 by bronchial epithelial cells. We confirmed the dependence of both ST2/IL-33 and IL-17A/IL-17RA signaling on the local and systemic neutrophils migration, as well as the crucial role of IL-1α, caspase-1 and caspase-11 for neutrophilic inflammation. The inflammation triggered by Natterin was a gasdermin-D-dependent inflammasome process, despite the cells did not die by pyroptosis. Finally, neutrophilic inflammation was mediated by non-canonical NLRP6 and NLRC4 adaptors through ASC interaction, independent of NLRP3. Our data highlight that the inflammatory process dependent on non-canonical inflammasome activation can be a target for pharmacological intervention in accidents by T. nattereri, which does not have adequate specific therapy.


Subject(s)
Caspase 1/metabolism , Caspases, Initiator/metabolism , Fish Venoms/pharmacology , Inflammasomes/metabolism , Inflammation/immunology , Interleukin-1beta/metabolism , Lung/drug effects , Neutrophil Infiltration/drug effects , Neutrophils/drug effects , Peritonitis/chemically induced , Receptors, Cell Surface/metabolism , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Caspase 1/genetics , Caspases, Initiator/genetics , Female , Inflammasomes/immunology , Inflammation Mediators/metabolism , Interleukin-1beta/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lung/enzymology , Lung/immunology , Male , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/enzymology , Neutrophils/immunology , Peritonitis/enzymology , Peritonitis/genetics , Peritonitis/immunology , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Signal Transduction
6.
Integr Environ Assess Manag ; 17(3): 507-520, 2021 May.
Article in English | MEDLINE | ID: mdl-33006436

ABSTRACT

Brazil is a global agricultural commodity producer and the largest consumer of pesticides. Pesticide use in Brazil comprised 549 280 tons in 2018. In the country, soybean, corn, and sugar cane are extensively produced, which are the most pesticides demanding crops. In the last years, the records of new pesticides were the highest in the historical series. They can persist in soil or water, accumulate in organisms, and contaminate workers and the general population through the air, water, or food. This review aimed to gather toxicological data obtained by animal models exposed to 4 pesticides: glyphosate, chlorpyrifos, abamectin, and 2,4-D. An additional goal was to compose an overview of how this subject has been approached, surveying which research groups are working on this field, where they are located, and relations with pesticides used in those regions. We collected the papers from the platforms PubMed, Scopus, Scielo, and Web of Science, performed in Brazil from 2014 to 2019. After two-step blind selection using the software Rayyan QCRI by different authors, 67 studies were selected to extract data. We observed that research is more concentrated in the South region, followed by the Southeast and Midwest, with 43%, 32%, and 23% of the studies, respectively. The prevalent institutions are from the states of Rio Grande do Sul, São Paulo, and Goiás. The effects on a variety of biomarkers help predict the potential risks to humans and nontarget organisms. The prevalent animal model was fish (36%). Overall, the main toxic effects evaluated were mortality, abnormalities in the blood cells, developmental abnormalities, and behavior alterations. Integr Environ Assess Manag 2021;17:507-520. © 2020 SETAC.


Subject(s)
Chlorpyrifos , Pesticides , 2,4-Dichlorophenoxyacetic Acid , Animals , Brazil , Chlorpyrifos/toxicity , Glycine/analogs & derivatives , Humans , Ivermectin/analogs & derivatives , Pesticides/analysis , Glyphosate
7.
Sci Rep ; 10(1): 584, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31953450

ABSTRACT

We hypothesized that beyond the Thalassophryne nattereri venoms ability to induce in mice a strong specific-Th2 response with high levels of specific IgE/IgG1, it would be able to trigger anaphylaxis in sensitized individuals. To investigate whether the venom is capable of inducing an allergic reaction in mice and characterize soluble and cellular mediators involved in this process, BALB/c female mice were sensitized intraperitoneally with decreasing-dose of venom at weekly intervals for 4 weeks and challenged by intraperitoneal, oral or epicutaneous routes with venom 2 weeks later. Our data show that sensitized-mice challenged by all routes showed intense symptoms of anaphylaxis, dependent on the anaphylactic IgG1 and IgE antibodies and mast cells. The late-phase reaction developed after initial symptoms was characterized by the influx of eosinophils, dependent on IL-5, IL-17A and eotaxin produced by Th2 cells in inflamed lungs and skin draining lymph-nodes. Using C57BL/6 deficient mice we demonstrated that IL-4 KO mice failed to develop anaphylactic symptoms or local Th2 inflammation, producing low levels of IgG1 and increased levels of IgG2a. Together our results demonstrated that the venom of T. nattereri has allergenic proteins that can trigger an allergic process, a phenomenon IgE-IgG1 dependent, IL-4-mediated and negatively regulated by IFN-γ.


Subject(s)
Anaphylaxis/immunology , Batrachoidiformes/metabolism , Fish Venoms/adverse effects , Interleukin-4/genetics , Interleukin-4/metabolism , Administration, Cutaneous , Administration, Oral , Anaphylaxis/chemically induced , Animals , Disease Models, Animal , Female , Fish Venoms/immunology , Gene Knockout Techniques , Humans , Immunoglobulin E/immunology , Immunoglobulin G/immunology , Injections, Intraperitoneal , Interferon-gamma/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Rats
8.
Int Immunopharmacol, v. 91, 107287, fev. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3429

ABSTRACT

Natterin is an aerolysin-like pore-forming toxin responsible for the toxic effects of the venom of the medically significant fish Thalassophryne nattereri. Using a combination of pharmacologic and genetic loss-of-function approaches we conduct a systematic investigation of the regulatory mechanisms that control Natterin-induced neutrophilic inflammation in the peritonitis model. Our data confirmed the capacity of Natterin to induce a strong and sustained neutrophilic inflammation leading to systemic inflammatory lung infiltration and revealed overlapping regulatory paths in its control. We found that Natterin induced the extracellular release of mature IL-1β and the sustained production of IL-33 by bronchial epithelial cells. We confirmed the dependence of both ST2/IL-33 and IL-17A/IL-17RA signaling on the local and systemic neutrophils migration, as well as the crucial role of IL-1α, caspase-1 and caspase-11 for neutrophilic inflammation. The inflammation triggered by Natterin was a gasdermin-D-dependent inflammasome process, despite the cells did not die by pyroptosis. Finally, neutrophilic inflammation was mediated by non-canonical NLRP6 and NLRC4 adaptors through ASC interaction, independent of NLRP3. Our data highlight that the inflammatory process dependent on non-canonical inflammasome activation can be a target for pharmacological intervention in accidents by T. nattereri, which does not have adequate specific therapy.

9.
Integr Environ Assess Manag, v. 17, n. 3, p. 507-520, out. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3264

ABSTRACT

Brazil is a global agricultural commodity producer and the largest consumer of pesticides. Intern pesticide use comprised 549,280 thousand tons in 2018. In the country, soybean, corn, and sugar cane are extensively produced, which are the most pesticides demanding crops. In the last years, the records of new pesticides were the highest in the historical series. They can persist in soil or water, accumulate in organisms, and contaminate workers and the general population through the air, water, or food. This review aimed to gather toxicological data obtained by animal models exposed to four pesticides: glyphosate, chlorpyrifos, abamectin, and 2,4‐D. Besides, to compose an overview of how this subject has been approached, surveying which research groups are working on this field, where they are located and relations with pesticides used in those regions. We collected the papers from the platforms PubMed, Scopus, Scielo, and Web of Science, performed in Brazil from 2014 to 2019. After two‐step blind selection using the software Rayyan QCRI by different authors, 67 studies were selected to extract data. We observed that research is more concentrated in the South region, followed by the Southeast and Midwest, with 43, 32, and 23% of the studies, respectively. The prevalent institutions are from the states of Rio Grande do Sul, São Paulo, and Goiás. The effects on a variety of biomarkers help predict the potential risks in humans and non‐target organisms. The prevalent animal model was fish (36%). Overall, the main toxic effects evaluated were mortality, abnormalities in the blood cells, developmental abnormalities, and behavior alterations.

10.
Sci Rep, v. 10, 584, jan. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2907

ABSTRACT

We hypothesized that beyond the Thalassophryne nattereri venoms ability to induce in mice a strong specific-Th2 response with high levels of specific IgE/IgG1, it would be able to trigger anaphylaxis in sensitized individuals. To investigate whether the venom is capable of inducing an allergic reaction in mice and characterize soluble and cellular mediators involved in this process, BALB/c female mice were sensitized intraperitoneally with decreasing-dose of venom at weekly intervals for 4 weeks and challenged by intraperitoneal, oral or epicutaneous routes with venom 2 weeks later. Our data show that sensitized-mice challenged by all routes showed intense symptoms of anaphylaxis, dependent on the anaphylactic IgG1 and IgE antibodies and mast cells. The late-phase reaction developed after initial symptoms was characterized by the influx of eosinophils, dependent on IL-5, IL-17A and eotaxin produced by Th2 cells in inflamed lungs and skin draining lymph-nodes. Using C57BL/6 deficient mice we demonstrated that IL-4 KO mice failed to develop anaphylactic symptoms or local Th2 inflammation, producing low levels of IgG1 and increased levels of IgG2a. Together our results demonstrated that the venom of T. nattereri has allergenic proteins that can trigger an allergic process, a phenomenon IgE-IgG1 dependent, IL-4-mediated and negatively regulated by IFN-gama.

11.
Sci. Rep. ; 10: 584, 2020.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17370

ABSTRACT

We hypothesized that beyond the Thalassophryne nattereri venoms ability to induce in mice a strong specific-Th2 response with high levels of specific IgE/IgG1, it would be able to trigger anaphylaxis in sensitized individuals. To investigate whether the venom is capable of inducing an allergic reaction in mice and characterize soluble and cellular mediators involved in this process, BALB/c female mice were sensitized intraperitoneally with decreasing-dose of venom at weekly intervals for 4 weeks and challenged by intraperitoneal, oral or epicutaneous routes with venom 2 weeks later. Our data show that sensitized-mice challenged by all routes showed intense symptoms of anaphylaxis, dependent on the anaphylactic IgG1 and IgE antibodies and mast cells. The late-phase reaction developed after initial symptoms was characterized by the influx of eosinophils, dependent on IL-5, IL-17A and eotaxin produced by Th2 cells in inflamed lungs and skin draining lymph-nodes. Using C57BL/6 deficient mice we demonstrated that IL-4 KO mice failed to develop anaphylactic symptoms or local Th2 inflammation, producing low levels of IgG1 and increased levels of IgG2a. Together our results demonstrated that the venom of T. nattereri has allergenic proteins that can trigger an allergic process, a phenomenon IgE-IgG1 dependent, IL-4-mediated and negatively regulated by IFN-gama.

SELECTION OF CITATIONS
SEARCH DETAIL
...