Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(12)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38140093

ABSTRACT

Flavanones are natural compounds that display anti-inflammatory activity. The aim of this work was to prepare PLGA nanoparticles (NPs) containing natural flavanones I ((2S)-5,7-dihydroxy-6-methyl-8-(3-methyl-2-buten-1-il)-2-phenyl-2,3-dihydro-4H-1-Benzopyran-4-one) and II (2S)-5,7-dihydroxy-2-(4'-methoxyphenyl)-6-methyl-8-(3-methyl-2-buten-1-yl)-2,3-dihydro-4H-1-Benzopyran-4-one) (NP I and NP II, respectively) so as to evaluate their potential for topical anti-inflammatory ocular therapy. An in silico study was carried out using the Molinspiration® and PASS Online web platforms before evaluating the in vitro release study and the ex vivo porcine cornea and sclera permeation. The HPLC analytical method was also established and validated. Finally, the in vitro anti-inflammatory efficacy of NPs was studied in the HCE-2 model. The flavanones I and II could be released following a kinetic hyperbolic model. Neither of the two NPs was able to permeate through the tissues. NP I and NP II were found to be respectful of any changes in the tissues' morphology, as evidenced by histological studies. In HCE-2 cells, NP I and NP II were not cytotoxic at concentrations up to 25 µM. NP I showed higher anti-inflammatory activity than NP II, being able to significantly reduce IL-8 production in LPS-treated HCE-2 cells. In summary, ocular treatment with NP I and NP II could be used as a promising therapy for the inhibition of ocular inflammation.

2.
Pharmaceutics ; 15(6)2023 May 31.
Article in English | MEDLINE | ID: mdl-37376079

ABSTRACT

The increasing number of skin cancer cases worldwide and the adverse side effects of current treatments have led to the search for new anticancer agents. In this present work, the anticancer potential of the natural flavanone 1, extracted from Eysenhardtia platycarpa, and four flavanone derivatives 1a-d obtained by different reactions from 1 was investigated by an in silico study and through cytotoxicity assays in melanoma (M21), cervical cancer (HeLa) cell lines and in a non-tumor cell line (HEK-293). The free compounds and compounds loaded in biopolymeric nanoparticles (PLGA NPs 1, 1a-d) were assayed. A structure-activity study (SAR) was performed to establish the main physicochemical characteristics that most contribute to cytotoxicity. Finally, ex vivo permeation studies were performed to assess the suitability of the flavanones for topical administration. Results revealed that most of the studied flavanones and their respective PLGA NPs inhibited cell growth depending on the concentration; 1b should be highlighted. The descriptors of the energetic factor were those that played a more important role in cellular activity. PLGA NPs demonstrated their ability to penetrate (Qp of 17.84-118.29 µg) and be retained (Qr of 0.01-1.44 g/gskin/cm2) in the skin and to exert their action for longer. The results of the study suggest that flavanones could offer many opportunities as a future anticancer topical adjuvant treatment.

3.
Int J Mol Sci ; 22(16)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34445584

ABSTRACT

There are a large number of remedies in traditional medicine focused on relieving pain and inflammation. Flavanones have been a potential source in the search for leading compounds and biologically active components, and they have been the focus of much research and development in recent years. Eysenhardtia platycarpa is used in traditional medicine for the treatment of kidney diseases, bladder infections, and diabetes mellitus. Many compounds have been isolated from this plant, such as flavones, flavanones, phenolic compounds, triterpenoid acids, chalcones, sugars, and fatty acids, among others. In this paper, natural flavanone 1 (extracted from Eysenhardtia platycarpa) as lead compound and flavanones 1a-1d as its structural analogues were screened for anti-inflammatory activity using Molinspiration® and PASS Online in a computational study. The hydro alcoholic solutions (FS) of flavanones 1, 1a-1d (FS1, FS1a-FS1d) were also assayed to investigate their in vivo anti-inflammatory cutaneous effect using two experimental models, a rat ear edema induced by arachidonic acid (AA) and a mouse ear edema induced by 12-O-tetradecanoylphorbol acetate (TPA). Histological studies and analysis of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6 were also assessed in AA-inflamed rat ear tissue. The results showed that the flavanone hydro alcoholic solutions (FS) caused edema inhibition in both evaluated models. This study suggests that the evaluated flavanones will be effective when used in the future in skin pathologies with inflammation, with the results showing 1b and 1d to be the best.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Ear Diseases/drug therapy , Edema/drug therapy , Fabaceae/chemistry , Flavanones/pharmacology , Inflammation/drug therapy , Plant Extracts/pharmacology , Animals , Ear Diseases/pathology , Edema/pathology , High-Throughput Screening Assays , Inflammation/pathology , Mice , Rats , Rats, Wistar
4.
Nanomedicine (Lond) ; 16(3): 205-220, 2021 02.
Article in English | MEDLINE | ID: mdl-33480290

ABSTRACT

Aim: The development and characterization of nanostructured flavanone formulations (FF) of 1 extracted from Eysenhardtia platycarpa and 1a, 1b, 1c and 1d derivatives by structural modification of 1 as anti-inflammatory candidates for topical treatment of local inflammation. Materials & methods: The FF were physicochemical characterized and the behavior release, skin permeation and, in vivo anti-inflammatory efficacy in the rat model were studied. Results: The FF revealed sustained drug release and showed slow drug penetration in human skin. The FF reduced inflammation in comparison with the standard formulation. Conclusion: The FF could be effective systems for the delivery and controlled release of flavanones on the skin, and the chemical modification of lead molecule 1 improved the efficacy.


Subject(s)
Fabaceae , Administration, Cutaneous , Animals , Biopharmaceutics , Drug Liberation , Flavanones , Rats , Skin/metabolism , Skin Absorption
5.
Biomolecules ; 10(6)2020 06 10.
Article in English | MEDLINE | ID: mdl-32532095

ABSTRACT

Prenylated flavanones are polyphenols that have diverse biological properties. The present paper focuses on a HPLC method validation for the quantification of prenylated flavanones (2S)-5,7-dihydroxy-6-(3-methyl-2-buten-1-yl)-2-phenyl-2,3-dihydro-4H-1Benzopyran-4-one 1 and derivatives (2S)-5,7-bis(acetyloxy)-6-(3-methyl-2-buten-1-yl)-2-phenyl-2,3-dihydro-4H-1-Benzopyran-4-one A; (2S)-5-hydroxy-7-methoxy-6-(3-methyl-2-buten-1-yl)-2-phenyl-2,3-dihydro-4H-1-Benzopyran-4-one B; (8S)-5-hydroxy-2,2-dimethyl-8-phenyl-3,4,7,8-tetrahydro-2H,6H-Benzo[1,2-b:5,4-b']dipyran-6-one C; and (8S)-5-hydroxy-2,2-dimethyl-8-phenyl-7,8-dihydro-2H,6H-Benzo[1,2-b:5,4-b']dipyran-6-one D applied in biopharmaceutic studies. The linear relationships are proven with significant correlation coefficients (R2 ˃ 0.999) in the range of 1.56 to 200 µg/mL with low limits of detection and quantification, on average of 0.4 µg/mL and 1.2 µg/mL, respectively. The validation method used in this work is highly accurate and precise, with values lower than 15%. The relative standard deviation values of repeatability of the instrumental system are demonstrated with less than 0.6% for all studied flavanones. Therefore, the applicability method of the quantification of the prenylated flavanones was established using the permeation of human skin in the Franz cell system. During the method previously described, there was no interference observed from human skin components in ex vivo permeation studies.


Subject(s)
Fabaceae/chemistry , Flavanones/analysis , Plant Extracts/analysis , Skin/chemistry , Chromatography, High Pressure Liquid , Flavanones/chemical synthesis , Humans , Molecular Structure , Plant Extracts/chemical synthesis , Plant Leaves/chemistry , Skin Absorption
6.
Molecules ; 22(9)2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28914822

ABSTRACT

The search for new alternatives for the prevention and treatment of cancer is extremely important to minimize human mortality. Natural products are an alternative to chemical drugs, since they are a source of many potential compounds with anticancer properties. In the present study, the (2S)-5,7-dihydroxy-6-prenylflavanone (semi-systematic name), also called (2S)-5,7-dihydroxy-6-(3-methyl-2-buten-1-yl)-2-phenyl-2,3-dihydro-4H-1-Benzopyran-4-one (CAS Name registered) (1) was isolated from Eysenhardtia platycarpa leaves. This flavanone 1 was considered as the lead compound to generate new cytotoxic derivatives 1a, 1b, 1c and 1d. These compounds 1, 1a, 1b, 1c, and 1d were then loaded in nanosized drug delivery systems such as polymeric nanoparticles (NPs). Small homogeneous spherical shaped NPs were obtained. Cytotoxic activity of free compounds 1, 1a, 1b, 1c, and 1d and encapsulated in polymeric NPs (NPs1, NPs1a, NPs1b, NPs1c and NPs1d) were evaluated against the pancreatic cancer cell line MiaPaCa-2. The obtained results demonstrated that NPs1a and NPs1b exhibited optimal cytotoxicity, and an even higher improvement of the cytotoxic efficacy was exhibited with the encapsulation of 1a. Based on these results, NPs1a were proposed as promising anticancer agent candidates.


Subject(s)
Drug Carriers/chemistry , Fabaceae/chemistry , Flavanones/chemistry , Nanoparticles/chemistry , Plant Extracts/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Drug Liberation , Drug Screening Assays, Antitumor , Flavanones/isolation & purification , Flavanones/pharmacology , Humans , Kinetics , Pancreatic Neoplasms , Particle Size , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Surface Properties , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...