Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(7): 11994-12004, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37155821

ABSTRACT

Radiation-balanced lasing and thermal profiling is reported in two Yb-doped laser crystals at room temperature. In 3% Yb3+:YAG a record efficiency of 30.5% was achieved by frequency-locking the laser cavity to the input light. Both the average excursion and axial temperature gradient of the gain medium were maintained within 0.1 K of room temperature at the radiation balance point. By including saturation of background impurity absorption in the analysis, quantitative agreement was obtained between theory and the experimentally measured laser threshold, radiation balance condition, output wavelength, and laser efficiency with only one free parameter. Radiation-balanced lasing was also achieved in 2% Yb3+:KYW with an efficiency of 2.2% despite high background impurity absorption, losses from Brewster end faces that were not parallel, and non-optimal output coupling. Our results confirm that relatively impure gain media can be operated as radiation-balanced lasers, contrary to earlier predictions which ignored background impurity properties.

2.
Opt Express ; 28(3): 2778-2788, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32121958

ABSTRACT

We report the first observation of laser cooling in Yb3+:KYW and validate the results by comparison with experiments in the well-studied material Yb3+:YAG. Radiation from a single-mode Ti:Al2O3 laser was used to achieve cooling of 1.5 K/W in 1% Yb:KYW at 1025 nm, comparing well with the reference material 3% Yb:YAG which cooled by 3.5 K/W at 1030 nm under open lab conditions. Experimental results for KYW crystals mounted on aerogels and doped with 1-20% Yb were in excellent agreement with the theoretical dependence of cooling power on the Yb absorption spectrum. Elimination of thermal conduction through the sample support structure was found to permit the attainment of lower temperatures and to simplify modeling of radiation balance conditions in self-cooled lasers with longitudinal thermal gradients. Contrary to the notion that more coolant ions yield higher cooling power, concentrations of Yb over 1% caused re-absorption of luminescence in KYW crystals, leading to a progressive red shift in the optimal cooling wavelength and the prevention of laser cooling altogether in a 20% sample at room temperature. The prospect of attaining radiation-balanced lasing in commercially-available tungstate crystals is evaluated.

SELECTION OF CITATIONS
SEARCH DETAIL
...