Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-474453

ABSTRACT

ImportanceThe emergence of the highly contagious Omicron variant of SARS-CoV-2 and the findings of a significantly reduced neutralizing potency of sera from convalescent or vaccinated individuals imposes the study of cellular immunity to predict the degree of immune protection to the yet again new coronavirus. DesignProspective monocentric observational study. SettingConducted between December 20-21 at the Santa Lucia Foundation IRCCS. Participants61 volunteers (Mean age 41.62, range 21-62; 38F/23M) with different vaccination and SARS-CoV-2 infection backgrounds donated 15 ml of blood. Of these donors, one had recently completed chemotherapy, and one was undergoing treatment with monoclonal antibodies; the others reported no known health issue. Main Outcome(s) and Measure(s)The outcomes were the measurement of T cell reactivity to the mutated regions of the Spike protein of the Omicron SARS-CoV-2 variant and the assessment of remaining T cell immunity to the spike protein by stimulation with peptide libraries. ResultsLymphocytes from freshly drawn blood samples were isolated and immediately tested for reactivity to the Spike protein of SARS-CoV-2. T cell responses to peptides covering the mutated regions in the Omicron variant were decreased by over 47% compared to the same regions of the ancestral vaccine strain. However, overall reactivity to the peptide library of the full-length protein was largely maintained (estimated 83%). No significant differences in loss of immune recognition were identified between groups of donors with different vaccination and/or infection histories. Conclusions and RelevanceWe conclude that despite the mutations in the Spike protein, the SARS-CoV-2 Omicron variant is nonetheless recognized by the cellular component of the immune system. It is reasonable to assume that protection from hospitalization and severe disease is maintained. Key PointsO_ST_ABSQuestionC_ST_ABSDoes the Omicron variant of SARS-CoV-2 escape cellular immunity? FindingsThis observational study was performed on 61 vaccinated donors with established immunity to SARS-CoV-2. Cellular responses to the mutated regions of the Omicron Spike protein were detected in 80% of donors. The mutations reduced T cell recognition by 47% compared to the vaccine strain. Reactivity to the whole Spike protein, however, was present in 100% of donors, and the fraction of remaining immunity to SARS-CoV-2 was estimated to be 83%. MeaningCellular immunity to the Omicron variant is maintained despite the mutations in its Spike protein, and may thus confer protection from severe COVID-19 in vaccinated individuals.

2.
Environ Monit Assess ; 193(7): 448, 2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34173864

ABSTRACT

 This paper reports heavy metal and metalloid accumulation in wild brown trout (Salmo trutta L., 1758 complex) raised in freshwater and uncontaminated Sardinia system (Italy). Metals are widespread pollutants of aquatic systems, and their contamination can originate from anthropogenic activities such as industrial waste, agricultural and domestic environments, and geochemical release. Fish has a relevant position within the human diet; moreover, fishes can accumulate metals, making them a valuable tool as biomarkers for risk assessment studies. The concentration of 22 metals and metalloids after chemical digestion was assessed by inductively coupled plasma-optic emission spectroscopy (ICP-OES) in both the guts and the edible part (EP, muscle + skin) of brown trout. The results, expressed as µg g-1, showed different levels of accumulation in the EP and guts, following the series Cu > Zn > Ba > Al > Sr > Fe > Pb and Fe > Al > Hg > As > Mn > Cu > Ba > B > Zn > Pb, respectively. PCA analysis showed a fairly good correlation between the total lipid and SAFA content and Cd, Hg, and Pb accumulation in the gut. Non-carcinogenic risk assessment, expressed as THQ (target hazard quotient), showed values far below 1 for all metals in muscles, while high As and Hg contamination of the gut draws attention to possible health risks which should be discarded from the fish before consumption. TR (target cancer risk) values showed alarmingly high values for As and Cd when the fish were consumed entirely (gut + EP), while Pb levels were far below the safety levels.


Subject(s)
Metalloids , Metals, Heavy , Salmonidae , Water Pollutants, Chemical , Animals , Environmental Monitoring , Humans , Italy , Metalloids/analysis , Metals, Heavy/analysis , Risk Assessment , Rivers , Spectrum Analysis , Trout , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...