Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-510657

ABSTRACT

Severe coagulopathy has been observed at the level of the microcirculation in several organs including lungs, heart and kidneys in patients with COVID-19, and in a minority of subjects receiving the SARS-CoV-2 vaccine. Various mechanisms have been implicated in these effects, including increases in circulating neutrophil extracellular traps, excessive inflammation, and endothelial dysfunction. Even if a correlation between infection by SARS-CoV-2 and upregulation of coagulation cascade components has been established in the lung, no direct proofs have been yet provided about the transcriptional machinery controlling the expression of these factors. Recent results obtained by us reported a novel transcriptional function of the SARS-CoV-2 Spike (S) viral protein involving a direct protein-protein interaction with the human Estrogen Receptor- (ER). Given the implications of ER in the control of key effectors in the coagulation cascade, we hypothesized that S-protein might increase the pro-coagulation activity of endothelial cells via the transcriptional activity of the ER, thus justifying the enhanced risk of thrombosis. To assess this, we tested the effects of S-protein on the expression of Tissue Factor (TF) and the overall procoagulation activity in a human endothelial cell line and confirmed this finding by overexpressing S-protein by gene transfer in mice. We then designed and tested two-point mutations in the S2 S-protein sequence that abolished the pro-coagulation function of S-protein in vitro and in vivo, without compromising its immunogenicity. In addition to reveal a new potential transcriptional function of S-protein, these results inspire the design of new vaccines with lower risk of thrombogenesis. Indeed, while the benefit/risk ratio remains overwhelming in favor of COVID-19 vaccination, our results shed light on the causal mechanisms of some rare anti-SARS-CoV-2 vaccine adverse events, and are thus essential for current and future vaccination and booster campaigns.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-465294

ABSTRACT

The new coronavirus that emerged, called SARS-CoV-2, is the causative agent of the COVID-19 pandemic. The identification of potential drug candidates that can rapidly enter clinical trials for the prevention and treatment of COVID-19 is an urgent need, despite the recent introduction of several new vaccines for the prevention and protection of this infectious disease, which in many cases becomes severe. Drug repurposing (DR), a process for studying existing pharmaceutical products for new therapeutic indications, represents one of the most effective potential strategies employed to increase the success rate in the development of new drug therapies. We identified raloxifene, a known Selective Estrogen Receptor Modulator (SERM), as a potential pharmacological agent for the treatment of COVID-19 patients. Following a virtual screening campaign on the most relevant viral protein targets, in this work we report the results of the first pharmacological characterization of raloxifene in relevant cellular models of COVID-19 infection. The results obtained on all the most common viral variants originating in Europe, United Kingdom, Brazil, South Africa and India, currently in circulation, are also reported, confirming the efficacy of raloxifene and, consequently, the relevance of the proposed approach. Taken together, all the information gathered supports the clinical development of raloxifene and confirms that the drug can be proposed as a viable new option to fight the pandemic in at least some patient populations. The results obtained so far have paved the way for a first clinical study to test the safety and efficacy of raloxifene, just concluded in patients with mild to moderate COVID-19.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-422677

ABSTRACT

Compound repurposing is an important strategy for the identification of effective treatment options against SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (3CL-Pro), also termed M-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyproteins pp1a and pp1ab at multiple distinct cleavage sites. We here report the results of a repurposing program involving 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and small molecules regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro, and have identified 62 additional compounds with IC50 values below 1 M and profiled their selectivity towards Chymotrypsin and 3CL-Pro from the MERS virus. A subset of 8 inhibitors showed anti-cytopathic effect in a Vero-E6 cell line and the compounds thioguanosine and MG-132 were analysed for their predicted binding characteristics to SARS-CoV-2 3CL-Pro. The X-ray crystal structure of the complex of myricetin and SARS-Cov-2 3CL-Pro was solved at a resolution of 1.77 [A], showing that myricetin is covalently bound to the catalytic Cys145 and therefore inhibiting its enzymatic activity. Graphical abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=154 SRC="FIGDIR/small/422677v1_ufig1.gif" ALT="Figure 1"> View larger version (41K): org.highwire.dtl.DTLVardef@17ca2aeorg.highwire.dtl.DTLVardef@19c5159org.highwire.dtl.DTLVardef@1a0adf6org.highwire.dtl.DTLVardef@1fd05cd_HPS_FORMAT_FIGEXP M_FIG O_FLOATNOAbstract Figure.C_FLOATNO Workflow for identification and profiling of inhibitors of SARS-CoV-2 3CL-Pro using a large scale repurposing and bioactive compound collection (rhs). Primary assay principle based on quenched FRET peptide substrate of SARS-CoV-2 3CL-Pro (lhs). Inhibiting compounds reduce fluorescence signal relative to DMSO controls. Hit profiling using X-ray. C_FIG

4.
Sebastian Guenther; Patrick Y A Reinke; Yaiza Fernandez-Garcia; Julia Lieske; Thomas J Lane; Helen Ginn; Faisal Koua; Christiane Ehrt; Wiebke Ewert; Dominik Oberthuer; Oleksandr Yefanov; Susanne Meier; Kristina Lorenzen; Boris Krichel; Janine Kopicki; Luca Gelisio; Wolfgang Brehm; Ilona Dunkel; Brandon Seychell; Henry Gieseler; Brenna Norton-Baker; Beatriz Escudero-Perez; Martin Domaracky; Sofiane Saouane; Aleksandra Tolstikova; Thomas White; Anna Haenle; Michael Groessler; Holger Fleckenstein; Fabian Trost; Marina Galchenkova; Yaroslav Gevorkov; Chufeng Li; Salah Awel; Ariana Peck; Miriam Barthelmess; Frank Schluenzen; Xavier P Lourdu; Nadine Werner; Hina Andaleeb; Najeeb Ullah; Sven Falke; Vasundara Srinivasan; Bruno Franca; Martin Schwinzer; Hevila Brognaro; Cromarte Rogers; Diogo Melo; John J Doyle; Juraj Knoska; Gisel E Pena Murillo; Aida Rahmani Mashhour; Filip Guicking; Vincent Hennicke; Pontus Fischer; Johanna Hakanpaeae; Jan Meyer; Philip Gribbon; Bernhard Ellinger; Maria Kuzikov; Markus Wolf; Andrea Rosario Beccari; Gleb Borenkov; David von Stetten; Guillaume Pompidor; Isabel Bento; Saravanan Panneerselvam; Ivars Karpics; Thomas R Schneider; Maria Garcia Alai; Stephan Niebling; Christian Guenther; Christina Schmidt; Robin Schubert; Huijong Han; Juliane Boger; Diana Monteiro; Linlin Zhang; Xinyuanyuan Sun; Jonathan Pletzer-Zelgert; Jan Wollenhaupt; Christian Feiler; Manfred S. Weiss; Eike C. Schulz; Pedram Mehrabi; Katarina Karnicar; Aleksandra Usenik; Jure Loboda; Henning Tidow; Ashwin Chari; Rolf Hilgenfeld; Charlotte Uetrecht; Russell Cox; Andrea Zaliani; Tobias Beck; Matthias Rarey; Stephan Guenther; Dusan Turk; Winfried Hinrichs; Henry N Chapman; Arwen R Pearson; Christian Betzel; Alke Meents.
Preprint in English | bioRxiv | ID: ppbiorxiv-378422

ABSTRACT

The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous health problems and economical challenges for mankind. To date, no effective drug is available to directly treat the disease and prevent virus spreading. In a search for a drug against COVID-19, we have performed a massive X-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (Mpro), which is essential for the virus replication and, thus, a potent drug target. In contrast to commonly applied X-ray fragment screening experiments with molecules of low complexity, our screen tested already approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds binding to Mpro. In subsequent cell-based viral reduction assays, one peptidomimetic and five non-peptidic compounds showed antiviral activity at non-toxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL
...