Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Mol Phylogenet Evol ; 73: 23-39, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24445018

ABSTRACT

Sponge taxonomy can be challenging as many groups exhibit extreme morphological plasticity induced by local environmental conditions. Foliose keratose sponges of the sub-family Phyllospongiinae (Dictyoceratida, Thorectidae: Strepsichordaia, Phyllospongia and Carteriospongia) are commonly found in intertidal and subtidal habitats of the Indo-Pacific. Lacking spicules, these sponges can be difficult to differentiate due to the lack of reliable morphological characters for species delineation. We use molecular phylogenies inferred from the nuclear Internal Transcribed Spacer 2 region (ITS2) and morphometrics (19 characters; 52 character states) to identify evolutionarily significant units (ESUs; sensu Moritz) within foliose Phyllosponginiids collected from seven geographic locations across tropical eastern and Western Australia. The ITS2 topology was congruent with the tree derived from Bayesian inference of discrete morphological characters supporting expected taxonomic relationships at the genus level and the identification of five ESUs. However, phylogenies inferred from the ITS2 marker revealed multiple sequence clusters, some of which were characterised by distinct morphological features and specific geographic ranges. Our results are discussed in light of taxonomic incongruences within this study, hidden sponge diversity and the role of vicariant events in influencing present day distribution patterns.


Subject(s)
Ecosystem , Evolution, Molecular , Phylogeny , Porifera/anatomy & histology , Porifera/classification , Tropical Climate , Animals , Australia , Bayes Theorem , Porifera/genetics , Sequence Analysis, DNA
2.
Mol Ecol ; 22(7): 1854-68, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23379529

ABSTRACT

Sponges are abundant, diverse and functionally important components of aquatic biotopes with crucial associations for many reef fish and invertebrates. Sponges have strict temperature optima, and mass mortality events have occurred after unusually high temperatures. To assess how sponges may adapt to thermal stress associated with a changing climate, we applied gene expression profiling to both stages of their bipartite life cycles. Adult Rhopaloeides odorabile are highly sensitive to thermal stress (32 °C), yet their larvae can withstand temperatures up to 36 °C. Here, we reveal the molecular mechanisms that underpin these contrasting thermal tolerances, which may provide sponges with a means to successfully disperse into cooler waters. Heat shock protein 70 was induced by increasing temperature in adult sponges, and genes involved in important biological functions including cytoskeleton rearrangement, signal transduction, protein synthesis/degradation, oxidative stress and detoxification were all negatively correlated with temperature. Conversely, gene expression in larvae was not significantly affected until 36 °C when a stress response involving extremely rapid activation of heat shock proteins occurred. This study provides the first transcriptomic assessment of thermal stress on both life history stages of a marine invertebrate facilitating better predictions of the long-term consequences of climate change for sponge population dynamics.


Subject(s)
Global Warming , Life Cycle Stages , Porifera/growth & development , Stress, Physiological/genetics , Acclimatization , Animals , Gene Expression , Gene Expression Profiling , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Hot Temperature , Oxidative Stress , Porifera/genetics
4.
Mol Ecol Resour ; 11(2): 328-34, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21429140

ABSTRACT

We report an accurate multiplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay, capable of reproducing gene expression profiles from 16 target genes [12 genes of interest (GOIs) and four reference genes (RGs)] in Acropora millepora, a common reef-building model coral species. The 12 GOIs have known or putative roles in the coral bleaching response, yet the method is not restricted to this particular assay and gene set. The procedure is based on the Beckman Coulter (Fullerton, CA, USA) GenomeLab™ GeXP Genetic Analysis System and bridges the gap between quantitative real-time PCR (qPCR) expression analysis of a single or a small number of genes and microarray gene expression surveys of thousands of genes. Despite large variation among biological replicates, the majority of GOIs were up-regulated (up to 4000%) in most colonies during a laboratory-based thermal stress experiment. Two genes, Nf-kß2 and MnSod, were consistently up-regulated in all colonies tested, and we therefore propose these as candidate markers useful for population-level evaluations of thermal stress. Our assay provides an important new tool for coral bleaching studies; because of the lower cost, labour and amount of cDNA required compared with singleplex qPCR, population-level studies with large biological replication are feasible.


Subject(s)
Anthozoa/genetics , Gene Expression Profiling , Animals , Molecular Sequence Data , Proteins/genetics , Temperature , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...