Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(9): 14196-14211, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37157289

ABSTRACT

Chiral properties of plasmonic metasurfaces, especially related to different absorption of left and right circularly polarized light leading to circular dichroism (CD), are a research hot topic in nanophotonics. There is often a need to understand the physical origin of CD for different chiral metasurfaces, and to get guidelines for the design of structures with optimized and robust CD. In this work, we numerically study CD at normal incidence in square arrays of elliptic nanoholes etched in thin metallic layers (Ag, Au, Al) on a glass substrate and tilted with respect to the symmetry axes. Strong CD arises in absorption spectra at the same wavelength region of extraordinary optical transmission, indicating highly resonant coupling between light and surface plasmon polaritons at the metal/glass and metal/air interfaces. We elucidate the physical origin of absorption CD by a careful comparison of optical spectra for different polarizations (linear and circular), with the aid of static and dynamic simulations of local enhancement of the electric field. Furthermore, we optimize the CD as a function of the ellipse parameters (diameters and tilt), the thickness of the metallic layer, and the lattice constant. We find that silver and gold metasurfaces are most useful for CD resonances above 600 nm, while aluminum metasurfaces are convenient for achieving strong CD resonances in the short-wavelength range of the visible regime and in the near UV. The results give a full picture of chiral optical effects at normal incidence in this simple nanohole array, and suggest interesting applications for chiral biomolecules sensing in such plasmonic geometries.

2.
Materials (Basel) ; 14(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668771

ABSTRACT

We have deposited Ge, SiGe, SiGeSn, AlAs, GaAs, InGaP and InGaAs based structures in the same metalorganic vapor phase epitaxy (MOVPE) growth chamber, in order to study the effect of the cross influence between groups IV and III-V elements on the growth rate, background doping and morphology. It is shown that by adopting an innovative design of the MOVPE growth chamber and proper growth condition, the IV elements growth rate penalization due to As "carry over" can be eliminated and the background doping level in both IV and III-V semiconductors can be drastically reduced. In the temperature range 748-888 K, Ge and SiGe morphologies do not degrade when the semiconductors are grown in a III-V-contaminated MOVPE growth chamber. Critical morphology aspects have been identified for SiGeSn and III-Vs, when the MOVPE deposition takes place, respectively, in a As or Sn-contaminated MOVPE growth chamber. III-Vs morphologies are influenced by substrate type and orientation. The results are promising in view of the monolithic integration of group-IV with III-V compounds in multi-junction solar cells.

3.
ACS Appl Mater Interfaces ; 11(1): 722-729, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30511836

ABSTRACT

Perovskite solar cells have become a game changer in the field of photovoltaics by reaching power conversion efficiencies beyond 23%. To achieve even higher efficiencies, it is necessary to increase the understanding of crystallization, grain formation, and layer ripening. In this study, by a systematic variation of methylammonium iodide (MAI) concentrations, we changed the stoichiometry and thereupon the crystal growth conditions in MAPbI3 perovskite solar cells, prepared by a two-step hybrid evaporation-spin-coating deposition method. Utilizing X-ray diffraction, scanning electron microscopy, atomic force microscopy, photoluminescence, and current-voltage ( J- V) characterization, we found that a relatively lower concentration of MAI, or in other words higher content of remnant and unconverted PbI2, correlates with smaller and stronger interconnected grains, as well as with an improved optoelectronic performance of the solar cells and mitigation of hysteresis. The possible explanations are grain and interface passivation by the excess PbI2 and a positive contribution of the grain boundaries to current extraction.

4.
Opt Express ; 26(7): 8470-8478, 2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29715813

ABSTRACT

A systematic analysis of photonic bands and group index in silicon grating waveguides is performed, in order to optimize band-edge slow-light behavior in integrated structures with low losses. A combination of numerical methods and perturbation theory is adopted. It is shown that a substantial increase of slow light bandwidth is achieved when decreasing the internal width of the waveguide and the silicon thickness in the cladding region. It is also observed that a reduction of the internal width does not undermine the performance of an adiabatic taper.

5.
Opt Express ; 23(12): 16289-304, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26193602

ABSTRACT

We present a theoretical optimisation of 1D apodized grating couplers in a "pure" Silicon-On-Insulator (SOI) architecture, i.e. without any bottom reflector element, by means of a general mutative method. We perform a comprehensive 2D Finite Difference Time Domain study of chirped and apodized grating couplers in 220 nm SOI, and demonstrate that the global maximum coupling efficiency in that platform is capped to 65% (-1.9 dB). Moving to designs with thicker Si-layers, we identify a new record design in 340 nm SOI, with a simulated coupling efficiency of 89% (-0.5 dB). Going to thicker Si layers does not further improve the efficiency, implying that -0.5 dB may be a global maximum for a grating coupler in SOI without a bottom-reflector. Even after allowing for 193 nm UV-lithographic fabrication constraints, the 340 nm design still offers -0.7 dB efficiency. These new apodized designs are the first pure SOI couplers compatible with deep-UV lithography to offer better than -1 dB insertion losses. With only very minor changes to existing deposition and lithography recipes, they are compatible with the multi-project wafer runs already offered by Si-Photonics foundries.

6.
Opt Express ; 21 Suppl 5: A808-20, 2013 Sep 09.
Article in English | MEDLINE | ID: mdl-24104576

ABSTRACT

We study light-trapping in thin-film silicon solar cells with rough interfaces. We consider solar cells made of different materials (c-Si and µc-Si) to investigate the role of size and nature (direct/indirect) of the energy band gap in light trapping. By means of rigorous calculations we demonstrate that the Lambertian Limit of absorption can be obtained in a structure with an optimized rough interface. We gain insight into the light trapping mechanisms by analysing the optical properties of rough interfaces in terms of Angular Intensity Distribution (AID) and haze. Finally, we show the benefits of merging ordered and disordered photonic structures for light trapping by studying a hybrid interface, which is a combination of a rough interface and a diffraction grating. This approach gives a significant absorption enhancement for a roughness with a modest size of spatial features, assuring good electrical properties of the interface. All the structures presented in this work are compatible with present-day technologies, giving recent progress in fabrication of thin monocrystalline silicon films and nanoimprint lithography.

7.
Opt Express ; 21(23): 27602-10, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24514278

ABSTRACT

In this work sharp silver nanotips are analyzed and proposed as useful plasmonic tools to reduce the threshold for the onset of strong coupling in the electromagnetic interaction of a point-like emitter with localized surface plasmons. If compared to similarly-sized spherical nanoparticles, conically-shaped nanoparticles turn out to be extremely useful to reduce the oscillator strength requirements for the emitting dipole, a reduction of the threshold by one sixth being obtained in a double cone configuration. Moreover the transition to the strong coupling regime is analyzed for several cone apertures, revealing a nonmonotonic behavior with the appearance of an optimal cone geometry. The emitted-light spectrum is obtained from the computation of the perturbative decay rate and photonic Lamb shift in the classical framework of the Discrete Dipole Approximation. This combined classical-quantum electrodynamics treatment is useful for the theoretical investigation on nonperturbative light-matter interactions involving complex shaped nanoparticles or aggregates.

8.
Opt Lett ; 37(23): 4868-70, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23202073

ABSTRACT

A theoretical study of randomly rough interfaces to obtain light trapping in thin-film silicon solar cells is presented. Roughness is modeled as a surface with Gaussian disorder, described using the root mean square of height and the lateral correlation length as statistical parameters. The model is shown to describe commonly used rough substrates. Rigorous calculations, with short-circuit current density as a figure of merit, lead to an optimization of disorder parameters and to a significant absorption enhancement. The understanding and optimization of disorder is believed to be of general interest for various realizations of thin-film solar cells.

9.
Opt Lett ; 37(18): 3807-9, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-23041866

ABSTRACT

Four-wave mixing (FWM) can be either stimulated or occur spontaneously. The first process is intrinsically much stronger and well understood through classical nonlinear optics. The latter, also known as parametric fluorescence, can be explained only in the framework of a quantum theory of light. We experimentally demonstrated that, in a microring resonator, there is a simple relation between the efficiencies of these two processes that is independent of the nonlinearity and ring size. In particular, we have shown the average power generated by parametric fluorescence can be immediately estimated from a classical FWM experiment. These results suggest that classical nonlinear characterization of a photonic integrated structure can provide accurate information on its nonlinear quantum properties.

10.
Opt Express ; 20 Suppl 2: A224-44, 2012 Mar 12.
Article in English | MEDLINE | ID: mdl-22418672

ABSTRACT

We theoretically investigate the light-trapping properties of one- and two-dimensional periodic patterns etched on the front surface of c-Si and a-Si thin film solar cells with a silver back reflector and an anti-reflection coating. For each active material and configuration, absorbance A and short-circuit current density Jsc are calculated by means of rigorous coupled wave analysis (RCWA), for different active materials thicknesses in the range of interest of thin film solar cells and in a wide range of geometrical parameters. The results are then compared with Lambertian limits to light-trapping for the case of zero absorption and for the general case of finite absorption in the active material. With a proper optimization, patterns can give substantial absorption enhancement, especially for 2D patterns and for thinner cells. The effects of the photonic patterns on light harvesting are investigated from the optical spectra of the optimized configurations. We focus on the main physical effects of patterning, namely a reduction of reflection losses (better impedance matching conditions), diffraction of light in air or inside the cell, and coupling of incident radiation into quasi-guided optical modes of the structure, which is characteristic of photonic light-trapping.

11.
Opt Express ; 18(25): 26613-24, 2010 Dec 06.
Article in English | MEDLINE | ID: mdl-21165010

ABSTRACT

We present the first demonstration of frequency conversion by simultaneous second- and third-harmonic generation in a silicon photonic crystal nanocavity using continuous-wave optical excitation. We observe a bright dual wavelength emission in the blue/green (450-525 nm) and red (675-790 nm) visible windows with pump powers as low as few microwatts in the telecom bands, with conversion efficiencies of ∼ 10 (-5) /W and ∼ 10/ W(2) for the second- and third-harmonic, respectively. Scaling behaviors as a function of pump power and cavity quality-factor are demonstrated for both second- and third order processes. Successful comparison of measured and calculated emission patterns indicates that third-harmonic is a bulk effect while second-harmonic is a surface-related effect at the sidewall holes boundaries. Our results are promising for obtaining practical low-power, continuous-wave and widely tunable multiple harmonic generation on a silicon chip.


Subject(s)
Lasers, Solid-State , Lighting/instrumentation , Nanostructures/chemistry , Nanotechnology/instrumentation , Refractometry/instrumentation , Silicon/chemistry , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Nanostructures/ultrastructure
12.
Opt Express ; 18(5): 4260-74, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20389438

ABSTRACT

We present a theoretical study of crystalline and amorphous silicon thin-film solar cells with a periodic pattern on a sub-micron scale realized in the silicon layer and filled with silicon dioxide right below a properly designed antireflection (AR) coating. The study and optimization of the structure as a function of all the photonic lattice parameters, together with the calculation of the absorption in a single layer, allows to identify the different roles of the periodic pattern in determining an increase of the absorbance. From one side, the photonic crystal and the AR coating act as impedance matching layers, thus minimizing reflection of incident light over a particularly wide range of frequencies. Moreover a strong absorption enhancement is observed when the incident light is coupled into the quasi guided modes of the photonic slab. We found a substantial increase of the short-circuit current when the parameters are properly optimized, demonstrating the advantage of a wavelength-scale, photonic crystal based approach for patterning of thin-film silicon solar cells.

13.
Langmuir ; 26(12): 10373-9, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20329714

ABSTRACT

We report on specific functionalization of GaAs/AlGaAs photonic structures for molecular sensing via the optical second harmonic generation signal in the visible range exhibited by these nanostructures. Functionalization has been achieved by peptides selected by the phage display technology, revealing specific recognition for semiconducting surfaces. These small peptides when biotinylated serve for controlled placement of biotin onto the substrate to capture then streptavidin. Functionalization (with biotinylated peptide) and molecular recognition (of streptavidin) events both result in enhancing the nonlinear optical response of the samples. Adsorption and infiltration of biomolecules into the GaAs/AlGaAs photonic structure were monitored by atomic force and scanning electron microscopy combined with Energy Dispersive X-ray spectroscopy. We demonstrate that once functionalized with specific peptides, photonic structures could be used as miniature biosensors down to femtomolar detection sensitivity, by monitoring changes in the second harmonic signal when molecules are captured. Our results prove the outstanding sensitivity of the nonlinear approach in biosensing with photonic crystal waveguides as compared to linear absorption techniques on the same samples. The present work is expected to pioneer development of a new class of extremely small affinity-based biosensors with high sensitivity and demonstrates that photonic structures support device functionality that includes strongly confined and localized nonlinear radiation emission and detection processes.


Subject(s)
Arsenicals , Gallium , Optics and Photonics/methods , Peptides/chemistry , Aluminum , Biosensing Techniques/methods , Biotinylation , Crystallization , Streptavidin
14.
Opt Express ; 18(2): 1450-61, 2010 Jan 18.
Article in English | MEDLINE | ID: mdl-20173973

ABSTRACT

We report on experimental demonstration of all-optical switching in a silicon-on-insulator photonic wire nanocavity operating at telecom wavelengths. The switching is performed with a control pulse energy as low as approximately 0.1 pJ on a cavity device that presents very high signal transmission, an ultra-high quality-factor, almost diffraction-limited modal volume and a footprint of only 5 microm(2). High-speed modulation of the cavity mode is achieved by means of optical injection of free carriers using a nanosecond pulsed laser. Experimental results are interpreted by means of finite-difference time-domain simulations. The possibility of using this device as a logic gate is also demonstrated.


Subject(s)
Nanotechnology/instrumentation , Nanotubes/chemistry , Optical Devices , Refractometry/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Silicon/chemistry , Transducers , Electric Conductivity , Equipment Design , Equipment Failure Analysis , Nanotubes/ultrastructure , Photons
15.
Nat Nanotechnol ; 5(1): 67-72, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19935647

ABSTRACT

The fields of plasmonics, Raman spectroscopy and atomic force microscopy have recently undergone considerable development, but independently of one another. By combining these techniques, a range of complementary information could be simultaneously obtained at a single molecule level. Here, we report the design, fabrication and application of a photonic-plasmonic device that is fully compatible with atomic force microscopy and Raman spectroscopy. Our approach relies on the generation and localization of surface plasmon polaritons by means of adiabatic compression through a metallic tapered waveguide to create strongly enhanced Raman excitation in a region just a few nanometres across. The tapered waveguide can also be used as an atomic force microscope tip. Using the device, topographic, chemical and structural information about silicon nanocrystals may be obtained with a spatial resolution of 7 nm.

16.
Opt Express ; 17(17): 15043-51, 2009 Aug 17.
Article in English | MEDLINE | ID: mdl-19687982

ABSTRACT

We present laser emission of a compact surface-emitting micro laser, optical pumped and operating at 1.5 microm at room temperature. A two-dimensional photonic crystal lattice conformed in a hybrid triangular-graphite configuration is designed for vertical emission. The structures have been fabricated in an InP slab, including four InAsP quantum wells as active layer, on the top of a Si substrate SiO(2) wafer bonded. Laser emission with thresholds around 70 microW and quality factors (Qs) up to 12000 have been measured. The Bloch mode selected for the emission keeps a high Q (>or= 2 x 10(5)) around the Gamma point for a wide range of in-plane values k(||)

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(4 Pt 2): 045603, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18999486

ABSTRACT

We report on the realization of a rewritable and local source inside a Si-based photonic crystal microcavity by infiltrating a solution of colloidal PbS quantum dots inside a single pore of the structure. We show that the resulting spontaneous emission from the source is both spatially and spectrally redistributed due to the mode structure of the photonic crystal cavity. The coupling of the quantum dot emission to the cavity mode is analyzed by mapping the luminescence signal of the infiltrated solution with a scanning near-field optical microscope at room temperature. Spectral characterization and the mode profile are in good agreement with a three-dimensional numerical calculation of the system.

18.
Nano Lett ; 8(8): 2321-7, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18630973

ABSTRACT

Noble metal nanowaveguides supporting plasmon polariton modes are able to localize the optical fields at nanometer level for high sensitivity biochemical sensing devices. Here we report on the design and fabrication of a novel photonic-plasmonic device which demonstrates label-free detection capabilities on single inorganic nanoparticles and on monolayers of organic compounds. In any case, we determine the Raman scattering signal enhancement and the device detection limits that reach a number of molecules between 10 and 250. The device can be straightforwardly integrated in a scanning probe apparatus with the possibility to match topographic and label-free spectroscopic information in a wide range of geometries.


Subject(s)
Nanostructures/chemistry , Nanostructures/ultrastructure , Microscopy, Electron, Scanning , Oxides/chemistry , Silicon Compounds/chemistry , Spectrum Analysis, Raman
19.
Opt Express ; 16(12): 8509-18, 2008 Jun 09.
Article in English | MEDLINE | ID: mdl-18545565

ABSTRACT

We investigate the change of the photonic band structure of the Suzuki-phase photonic crystal lattice when the horizontal mirror symmetry is broken by an underlying Bragg reflector. The structure consists of an InP photonic crystal slab including four InAsP quantum wells, a SiO(2) bonding layer, and a bottom high index contrast Si/SiO(2) Bragg mirror deposited on a Si wafer. Angle- and polarization-resolved photoluminescence spectroscopy has been used for measuring the photonic band structure and for investigating the coupling to a polarized plane wave in the far field. A drastic change in the k-space photonic dispersion between the structure with and without Bragg reflector is measured. An important enhancement on the photoluminescence emission up to seven times has been obtained for a nearly flat photonic band, which is characteristic of the Suzuki-phase lattice.


Subject(s)
Electronics/instrumentation , Models, Theoretical , Optics and Photonics/instrumentation , Refractometry/instrumentation , Silicon Dioxide/chemistry , Computer Simulation , Crystallization/methods , Equipment Design , Equipment Failure Analysis , Light , Photons , Scattering, Radiation
20.
Phys Rev Lett ; 99(5): 053907, 2007 Aug 03.
Article in English | MEDLINE | ID: mdl-17930758

ABSTRACT

Scaling laws of second-harmonic generation (SHG) in nonlinear Bragg stacks (or finite one-dimensional photonic crystals) as a function of the number N of periods are explored. While it is known that SHG scales like the sixth power of N when phase matching is achieved, we find maximal scaling like the eighth power of N under appropriate non-phase-matching conditions with the pump and harmonic waves being resonant with band-edge states. In this framework we introduce the concept of self-adaptive coherence length that scales with the system length. An analytical treatment based on coupled-mode equations clarifies the conditions for obtaining different scaling laws as a function of filling factor in the photonic gap map.

SELECTION OF CITATIONS
SEARCH DETAIL
...