Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
EMBO Mol Med ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898234

ABSTRACT

Circulating tumor DNA (ctDNA) is the cornerstone of liquid biopsy diagnostics, revealing clinically relevant genomic aberrations from blood of cancer patients. Genomic analysis of single circulating tumor cells (CTCs) could provide additional insights into intra-patient heterogeneity, but it requires whole-genome amplification (WGA) of DNA, which might introduce bias. Here, we describe a novel approach based on mass spectrometry for mutation detection from individual CTCs not requiring WGA and complex bioinformatics pipelines. After establishment of our protocol on tumor cell line-derived single cells, it was validated on CTCs of 33 metastatic melanoma patients and the mutations were compared to those obtained from tumor tissue and ctDNA. Although concordance with tumor tissue was superior for ctDNA over CTC analysis, a larger number of mutations were found within CTCs compared to ctDNA (p = 0.039), including mutations in melanoma driver genes, or those associated with resistance to therapy or metastasis. Thus, our results demonstrate proof-of-principle data that CTC analysis can provide clinically relevant genomic information that is not redundant to tumor tissue or ctDNA analysis.

2.
J Immunother Cancer ; 11(5)2023 05.
Article in English | MEDLINE | ID: mdl-37258039

ABSTRACT

BACKGROUND: An increased incidence of thrombotic complications associated with an increased mortality rate has been observed under immune checkpoint inhibition (ICI). Recent investigations on the coagulation pathways have highlighted the direct role of key coagulatory proteins and platelets in cancer initiation, angiogenesis and progression. The aim of this study was to evaluate the prognostic value of von Willebrand factor (vWF) and its regulatory enzyme a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13), D-dimers and platelets in a cohort of patients with metastatic melanoma receiving ICI. METHODS: In a prospective cohort of 83 patients with metastatic melanoma, we measured the systemic levels of vWF-antigen (vWF:Ag), ADAMTS13 activity, D-dimers and platelets, before the beginning of the treatment (baseline), and 6, 12 and 24 weeks after. In parallel, we collected standard biological parameters used in clinical routine to monitor melanoma response (lactate deshydrogenase (LDH), S100). The impact of neutrophil-to-lymphocyte ratio (NLR) and C-reactive protein (CRP) on overall survival (OS) in patients receiving ICI was assessed. Univariable and multivariable Cox proportional models were then used to investigate any potential association of these parameters to clinical progression (progression-free survival (PFS) and OS). Baseline values and variations over therapy course were compared between primary responders and resistant patients. RESULTS: Patients with melanoma present with dysregulated levels of vWF:Ag, ADAMTS13 activity, D-dimers, LDH, S100 and CRP at the beginning of treatment. With a median clinical follow-up of 26 months, vWF:Ag interrogated as a continuous variable was significantly associated with PFS in univariate and multivariate analysis (HR=1.04; p=0.007). Lower values of vWF:Ag at baseline were observed in the primary responders group (median: 29.4 µg/mL vs 32.9 µg/mL; p=0.048) when compared with primary resistant patients. As for OS, we found an association with D-dimers and ADAMTS13 activity in univariate analysis and vWF:Ag in univariate and multivariate analysis including v-raf murine sarcoma viral oncogene homolog B1 (BRAF) mutation and Eastern Cooperative Oncology Group (ECOG) performance status. Follow-up over the course of treatment depicts different evolution profiles for vWF:Ag between the primary response and resistance groups. CONCLUSIONS: In this prospective cohort, coagulatory parameters such as ADAMTS13 activity and D-dimers are associated with OS but baseline vWF:Ag levels appeared as the only parameter associated with response and OS to ICI. This highlights a potential role of vWF as a biomarker to monitor ICI response of patients with malignant melanoma.


Subject(s)
Melanoma , von Willebrand Factor , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Melanoma/drug therapy , Prognosis , Prospective Studies , von Willebrand Factor/metabolism
3.
J Proteome Res ; 22(4): 1213-1230, 2023 04 07.
Article in English | MEDLINE | ID: mdl-36926972

ABSTRACT

In cancer metastasis, single circulating tumor cells (CTCs) in the blood and disseminated tumor cells (DTCs) in the bone marrow mediate cancer metastasis. Because suitable biomarker proteins are lacking, CTCs and DTCs with mesenchymal attributes are difficult to isolate from the bulk of normal blood cells. To establish a procedure allowing the isolation of such cells, we analyzed the cell line BC-M1 established from DTCs in the bone marrow of a breast cancer patient by stable isotope labeling by amino acids in cell culture (SILAC) and mass spectrometry. We found high levels of the transmembrane protein CUB domain-containing protein 1 (CDCP1) in breast cancer cell lines with mesenchymal attributes. Peripheral blood mononuclear cells were virtually negative for CDCP1. Confirmation in vivo by CellSearch revealed CDCP1-positive CTCs in 8 of 30 analyzed breast cancer patients. Only EpCam-positive CTCs were enriched by CellSearch. Using the extracellular domain of CDCP1, we established a magnetic-activated cell sorting (MACS) approach enabling also the enrichment of EpCam-negative CTCs. Thus, our approach is particularly suited for the isolation of mesenchymal CTCs with downregulated epithelial cancer that occur, for example, in triple-negative breast cancer patients who are prone to therapy failure.


Subject(s)
Breast Neoplasms , Neoplastic Cells, Circulating , Humans , Female , Neoplastic Cells, Circulating/metabolism , Breast Neoplasms/pathology , Epithelial Cell Adhesion Molecule , Leukocytes, Mononuclear , MCF-7 Cells , Biomarkers, Tumor , Neoplasm Metastasis/pathology , Antigens, Neoplasm , Cell Adhesion Molecules
4.
Clin Chem ; 68(2): 344-353, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34458901

ABSTRACT

BACKGROUND: Despite recent progress in liquid biopsy technologies, early blood-based detection of breast cancer is still a challenge. METHODS: We analyzed secretion of the protein cellular communication network factor 1 (CCN1, formerly cysteine-rich angiogenic inducer 61) in breast cancer cell lines by an enzyme-linked immunosorbent assay (ELISA). Soluble CCN1 in the plasma (2.5 µL) of 544 patients with breast cancer and 427 healthy controls was analyzed by ELISA. The breast cancer samples were acquired at the time of primary diagnosis prior to neoadjuvant therapy or surgery. A classifier was established on a training cohort of patients with breast cancer and age-adapted healthy controls and further validated on an independent cohort comprising breast cancer patients and healthy controls. Samples from patients with benign breast diseases were investigated as additional controls. Samples from patients with acute heart diseases (n = 127) were investigated as noncancer controls. The diagnostic accuracy was determined by receiver operating characteristic using the parameters area under the curve, sensitivity, and specificity. RESULTS: CCN1 was frequently secreted by breast cancer cell lines into the extracellular space. Subsequent analysis of clinical blood samples from patients with breast cancer and age-adjusted healthy controls revealed an overall specificity of 99.0% and sensitivity of 80.0% for cancer detection. Remarkably, 81.5% of small T1 cancers were already CCN1-positive, while CCN1 concentrations in patients with benign breast lesions were below the threshold for breast cancer detection. CONCLUSIONS: Circulating CCN1 is a potentially novel blood biomarker for the detection of breast cancer at the earliest invasive stage.


Subject(s)
Breast Neoplasms , Biomarkers , Biomarkers, Tumor , Breast Neoplasms/pathology , Case-Control Studies , Early Detection of Cancer , Female , Humans , Liquid Biopsy , Proteins
5.
Mol Oncol ; 15(11): 2877-2890, 2021 11.
Article in English | MEDLINE | ID: mdl-34510714

ABSTRACT

Lung cancer is the most often diagnosed cancer and the main cause of cancer deaths in the world compared with other tumor entities. To date, the only screening method for high-risk lung cancer patients is low-dosed computed tomography which still suffers from high false-positive rates and overdiagnosis. Therefore, there is an obvious need to identify biomarkers for the detection of lung cancer that could be used to guide the use of low-dosed computed tomography or other imaging procedures. We aimed to assess the performance of the protein cysteine-rich angiogenic inducer 61 (CYR61) as a circulating biomarker for the detection of lung cancer. CYR61 concentrations in plasma were significantly elevated in 87 lung cancer patients (13.7 ± 18.6 ng·mL-1 ) compared with 150 healthy controls (0.29 ± 0.22 ng·mL-1 ). Subset analysis stratified by sex revealed increased CYR61 concentrations for adenocarcinoma and squamous cell carcinoma in men compared with women. For male lung cancer patients versus male healthy controls, the sensitivity was 84% at a specificity of 100%, whereas for females, the sensitivity was 27% at a specificity of 99%. The determination of circulating CYR61 protein in plasma might improve the detection of lung cancer in men. The findings of this pilot study support further verification of CYR61 as a biomarker for lung cancer detection in men. Additionally, CYR61 is significantly elevated in women but sensitivity and specificity for CYR61 are too low for the improvement of the detection of lung cancer in women.


Subject(s)
Cysteine , Lung Neoplasms , Biomarkers , Cysteine-Rich Protein 61/metabolism , Female , Humans , Lung Neoplasms/diagnosis , Male , Pilot Projects
6.
Cancers (Basel) ; 13(3)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540545

ABSTRACT

(1) Background: the early detection of cancer cells in the blood or bone marrow of breast cancer patients improves the understanding of metastasis. Disseminating tumor cells in the bone marrow with a pronounced manifestation of mesenchymal markers (mDTC) are difficult to detect by epithelial markers, but they are relevant in the initiation of metastasis. (2) Methods: the breast cancer mDTC cell line BC-M1 was analyzed by mass spectrometry, which revealed high levels of the protein-cysteine-rich angiogenic inducer 61 (Cyr61). The function of Cyr61 was investigated using shRNA and hypoxia. Peripheral blood samples from 35 breast cancer patients were investigated for CTCs defined as cytokeratin-positive/CD45-negative cells. (3) Results: the Cyr61 levels are elevated in mDTC lines from breast, lung, and prostate cancer patients. The loss of Cyr61 resulted in the diminished expression of hypoxia-inducible factor 1-alpha, and increased apoptosis. Cyr61 was present in 47 (43%) of the 109 detected circulating tumor cells (CTCs), while the blood and bone marrow cells from healthy controls were Cyr61-negative. (4) Conclusions: Cyr61 is expressed in mDTC lines, supports the viability of cancer cells, and classifies a new subset of cytokeratin-positive CTCs, which deserves further investigation.

7.
Clin Chem ; 67(2): 363-373, 2021 01 30.
Article in English | MEDLINE | ID: mdl-33336248

ABSTRACT

BACKGROUND: Detection of asbestos-associated diseases like asbestosis or mesothelioma is still challenging. We sought to improve the diagnosis of benign asbestos-associated disease (BAAD) by detection of the protein cysteine-rich angiogenic inducer 61 (Cyr61) in human plasma. METHODS: Plasma Cyr61 was quantified using an enzyme-linked immunosorbent assay. Plasma samples from males diagnosed with BAAD, but without a malignant disease (n = 101), and malignant mesothelioma (n = 21; 15 males, 6 females), as well as nonasbestos-exposed healthy control participants (n = 150; 58 males, 92 females) were analyzed. Clinical sensitivity and specificity of Cyr61 were determined by receiver operating characteristic analysis. RESULTS: The median plasma Cyr61 concentration for healthy control participants was 0.27 ng/mL. Cytoplasmic Cyr61 in peripheral blood mononuclear cells from healthy control participants was evenly distributed, as detected by immunofluorescent staining. The increase in plasma Cyr61 concentrations in the BAAD study group was statistically significant compared to the healthy control participants (P < 0.0001). For the detection of BAAD vs male healthy control participants, clinical sensitivity was 88% and clinical specificity 95% with an area under the curve of 0.924 at maximal Youden Index. For a predefined clinical specificity of 100%, the clinical sensitivity was 76%. For male mesothelioma patients vs male healthy control participants, the clinical sensitivity at maximal Youden Index was 95% with a clinical specificity of 100% (area under the curve, 0.997) and for a predefined clinical specificity of 100%, the clinical sensitivity was 93%. CONCLUSIONS: In our study, plasma Cyr61 protein concentrations showed to be a new biomarker for asbestos-associated diseases like BAAD and mesothelioma in men, which deserves further investigation in large-scale cohort studies.


Subject(s)
Asbestosis/diagnosis , Cysteine-Rich Protein 61/blood , Mesothelioma/diagnosis , Aged , Aged, 80 and over , Asbestosis/blood , Biomarkers/blood , Case-Control Studies , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Mesothelioma/blood , Middle Aged , Sensitivity and Specificity
8.
Cells ; 9(5)2020 05 25.
Article in English | MEDLINE | ID: mdl-32466213

ABSTRACT

BACKGROUND: Solid epithelial tumors like breast cancer are the most frequent malignancy in women. Circulating tumor cells (CTCs) are frequently released from hypoxic areas into the blood, where CTCs face elevated oxygen concentrations. This reoxygenation might challenge the use of CTCs for liquid biopsy. METHODS: We modeled this situation in vitro using the breast cancer cell lines-MCF-7, MDA-MB-468, MDA-MB-231-and the cell line BC-M1 established from DTCs in the bone marrow. Cells were cultured under hypoxia, followed by a reoxygenation pulse for 4 h, reflecting the circulation time of CTCs. Analyzed were gene products like EGFR, ErbB-2, EpCAM, PD-L1 on mRNA and protein level. RESULTS: mRNAs of erbb2 or pdl1 and protein levels of PD-L1 displayed significant changes, whereas ErbB-2 protein levels remained constant. The strongest discrepancy between protein and mRNA levels under hypoxia was observed for EGFR, supporting the idea of cap-independent translation of egfr mRNA. Analyses of the phosphorylation of AKT, Erk 1/2, and Stat3 revealed strong alterations after reoxygenation. CONCLUSIONS: CTCs reaching secondary sites faster than reoxygenation could alter the mRNA and protein levels in the cells. CTC and DTC with high PD-L1 levels might become quiescent under hypoxia but were easily reactivated by reoxygenation.


Subject(s)
Models, Biological , Neoplasm Proteins/metabolism , Neoplastic Cells, Circulating/pathology , Oxygen/metabolism , Tumor Hypoxia/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Differentiation , Cell Line, Tumor , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Humans , Neoplastic Cells, Circulating/metabolism , Phosphorylation , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Mol Oncol ; 10(8): 1330-43, 2016 10.
Article in English | MEDLINE | ID: mdl-27491860

ABSTRACT

Modern technologies enable detection and characterization of circulating tumor cells (CTC) in peripheral blood samples. Thus, CTC have attracted interest as markers for therapeutic response in breast cancer. First studies have incorporated CTC analyses to guide therapeutic interventions and stratification of breast cancer patients. Aim of this study was to analyze characteristic features of CTC as biomarker for predicting resistance to HER2-targeted therapies. Therefore, CTC from metastatic breast cancer patients with HER2-negative primary tumors screened for the prospective randomized phase III trial DETECT III were explored for their HER2 status and the presence of PIK3CA mutations. Detection and characterization of HER2 expression of CTC were conducted with the CellSearch(®) system. Fifteen of 179 CTC-positive patients (8.4%) contained ≥1 CTC with strong HER2 expression. Genomic DNA from individual CTC isolated by micromanipulation was propagated by whole genome amplification and analyzed for PIK3CA mutations in exons 9 and 20 by Sanger sequencing. One or more CTC/7.5 mL were detected in 179/290 patients (61.7%). In 109 patients (34.8%), ≥5 CTC/7.5 mL were found. We detected at least one CTC with the mutation p.E542K, p.E545K, p.H1047R, p.H1047L or p.M1043V in 12/33 patients (36.4%). Thirty six of 114 CTC (31.6%) harbored one of these mutations. CTC in individual patients exhibited heterogeneity concerning PIK3CA mutations and HER2 expression. In conclusion, clinically relevant genomic aberrations such as mutations in the hotspot regions of exon 9 and 20 of the PIK3CA gene can be detected in single CTC and might provide insights into mechanisms of resistance to HER2-targeted therapies.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Class I Phosphatidylinositol 3-Kinases/genetics , Mutation/genetics , Neoplastic Cells, Circulating/pathology , Receptor, ErbB-2/metabolism , Adult , Aged , Aged, 80 and over , Base Sequence , Exons/genetics , Female , Humans , Middle Aged , Neoplasm Metastasis , Neoplastic Cells, Circulating/metabolism
10.
Cancer Res ; 75(24): 5367-77, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26573792

ABSTRACT

Disseminated tumor cells (DTC), which share mesenchymal and epithelial properties, are considered to be metastasis-initiating cells in breast cancer. However, the mechanisms supporting DTC survival are poorly understood. DTC extravasation into the bone marrow may be encouraged by low oxygen concentrations that trigger metabolic and molecular alterations contributing to DTC survival. Here, we investigated how the unfolded protein response (UPR), an important cytoprotective program induced by hypoxia, affects the behavior of stressed cancer cells. DTC cell lines established from the bone marrow of patients with breast cancer (BC-M1), lung cancer, (LC-M1), and prostate cancer (PC-E1) were subjected to hypoxic and hypoglycemic conditions. BC-M1 and LC-M1 exhibiting mesenchymal and epithelial properties adapted readily to hypoxia and glucose starvation. Upregulation of UPR proteins, such as the glucose-regulated protein Grp78, induced the formation of filamentous networks, resulting in proliferative advantages and sustained survival under total glucose deprivation. High Grp78 expression correlated with mesenchymal attributes of breast and lung cancer cells and with poor differentiation in clinical samples of primary breast and lung carcinomas. In DTCs isolated from bone marrow specimens from breast cancer patients, Grp78-positive stress granules were observed, consistent with the likelihood these cells were exposed to acute cell stress. Overall, our findings provide the first evidence that the UPR is activated in DTC in the bone marrow from cancer patients, warranting further study of this cell stress pathway as a predictive biomarker for recurrent metastatic disease.


Subject(s)
Bone Marrow/pathology , Breast Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Unfolded Protein Response/physiology , Adaptation, Physiological/physiology , Blotting, Western , Cell Hypoxia/physiology , Cell Line , Endoplasmic Reticulum Chaperone BiP , Female , Humans , Immunohistochemistry , Tissue Array Analysis
11.
J Pathol ; 227(2): 234-44, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22262199

ABSTRACT

HER2 signalling by heterodimerisation with EGFR and HER3 in breast cancer is associated with worst outcome of the afflicted patients, which is attributed not only to the aggressiveness of such tumours but also to therapy resistance. Thus, in the present study we investigated the role of EGFR, HER2 and HER3 lateral signalling in cell migration by applying the MDA-MB-468-HER2 (MDA-HER2) breast cancer cell line, representing a valid model system. Knockdown of HER3 expression by siRNA resulted in decreased phosphorylated AKT (pAKT) levels, abrogated epidermal growth factor (EGF)-mediated PLC-γ1 activation and a diminished EGF-induced migratory activity, depicting the interplay of EGF receptor (EGFR)/HER2/PLC-γ1 and HER2/HER3/PI3K signalling in mediating the migration of EGFR/HER2/HER3-expressing breast cancer cells. Since therapy failure usually arises from metastatic cells, we further investigated whether HER3 signalling was active in established breast cancer disseminated tumour cell (DTC) lines as well as in primary DTCs derived from breast cancer patients. EGF treatment of DTC lines resulted solely in increased pAKT S473 levels, whereas in MDA-HER2 cells both pAKT S473 and pAKT T308 levels were increased upon EGF stimulation. Moreover, despite active HER3 molecules, as indicated by pTyr1222 staining, about 90% of analysed breast cancer patient DTCs exhibited very low or even no detectable pAKT S473 levels, suggesting that these cells might have fallen into dormancy. In summary, our data indicate the important role in EGFR, HER2 and HER3 lateral signalling in breast cancer cell migration. Moreover, our data further show that primary tumour cells and DTCs can vary in their HER activation status, which is important to know in the context of cancer therapy.


Subject(s)
Bone Neoplasms/enzymology , Breast Neoplasms/enzymology , Cell Movement , ErbB Receptors/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phospholipase C gamma/metabolism , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/metabolism , Signal Transduction , Animals , Bone Neoplasms/genetics , Bone Neoplasms/secondary , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Epidermal Growth Factor/metabolism , Female , Humans , Mice , Mice, Inbred BALB C , Neoplasm Invasiveness , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Receptor, ErbB-3/genetics , Transfection
12.
Clin Cancer Res ; 18(4): 993-1003, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22228641

ABSTRACT

PURPOSE: Circulating tumor cells (CTC) might function as early markers for breast cancer metastasis or monitoring therapy efficacy. Enrichment and identification of CTCs are based on epithelial markers that might be modulated during epithelial-mesenchymal transition. Little is known about the expression of keratins in CTCs and whether all CTCs can be detected with antibodies directed against a limited panel of keratins. EXPERIMENTAL DESIGN: Protein expression of keratin 2, 4-10, 13-16, 18, and 19 were assessed by a cocktail of antibodies (C11, AE1, AE3, and K7) and keratin antibodies C11 and A45-B/B3 alone in 11 breast cancer cell lines and 50 primary breast carcinomas and their lymph node metastases. Furthermore, CTCs were assessed in blood of 70 metastatic breast cancer patients. RESULTS: Claudin-low cell lines did not show expression of normal breast epithelial keratins but were positive for K14 and K16, detected by the cocktail only. Primary breast carcinomas showed changes in keratin expression during metastatic progression to the lymph nodes. In 35 of 70 patients CTCs were identified, of which 83%, 40%, and 57% were identified by the cocktail, C11 and A45-B/B3, respectively. Identification of CTCs by the cocktail was associated with shorter survival (P < 0.01). In silico analyses revealed association between KRT16 expression and shorter relapse-free survival in metastatic breast cancer. CONCLUSION: Breast cancer cells show a complex pattern of keratin expression with potential biologic relevance. Individual keratin antibodies recognizing only a limited set of keratins inherit the risk to miss biologically relevant CTCs in cancer patients, and antibody cocktails including these keratins are therefore recommended.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Keratins/metabolism , Neoplastic Cells, Circulating/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Cell Line, Tumor , Disease Progression , Female , Gene Expression , Gene Expression Profiling , Humans , Keratin-16/genetics , Keratin-16/metabolism , Keratins/genetics , Lymphatic Metastasis , Survival Analysis
13.
Clin Cancer Res ; 16(13): 3340-8, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20592016

ABSTRACT

PURPOSE: A preliminary study performed on a small cohort of multifocal prostate cancer (PCa) detected BRCA1 allelic imbalances among circulating tumor cells (CTC). The present analysis was aimed to elucidate the biological and clinical roles of BRCA1 losses in metastatic spread and tumor progression in PCa patients. EXPERIMENTAL DESIGN: To map molecular progression in PCa outgrowth, we used fluorescence in situ hybridization analysis of primary tumors and lymph node sections, and CTCs from peripheral blood. RESULTS: We found that 14% of 133 tested patients carried monoallelic BRCA1 loss in at least one tumor focus. Extended molecular analysis of chr17q revealed that this aberration was often a part of larger cytogenetic rearrangement involving chr17q21 accompanied by allelic imbalance of the tumor suppressor gene PTEN and lack of BRCA1 promoter methylation. The BRCA1 losses correlated with advanced T stage (P < 0.05), invasion to pelvic lymph nodes (P < 0.05), as well as biochemical recurrence (P < 0.01). Their prevalence was twice as high within 62 lymph node metastases (LNM) as in primary tumors (27%, P < 0.01). The analysis of 11 matched primary PCa-LNM pairs confirmed the suspected transmission of genetic abnormalities between these two sites. In four of seven patients with metastatic disease, BRCA1 losses appeared in a minute fraction of cytokeratin- and vimentin-positive CTCs. CONCLUSIONS: Small subpopulations of PCa cells bearing BRCA1 losses might be one confounding factor initiating tumor dissemination and might provide an early indicator of shortened disease-free survival.


Subject(s)
Gene Deletion , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Aged , Chromosomes, Human, Pair 17 , Disease Progression , Gene Dosage , Humans , Lymphatic Metastasis , Male , Middle Aged , Models, Biological , Neoplasm Metastasis , Prostatic Neoplasms/blood , Translocation, Genetic
14.
J Proteome Res ; 9(6): 3158-68, 2010 Jun 04.
Article in English | MEDLINE | ID: mdl-20423148

ABSTRACT

Metastases arise from disseminated tumor cells (DTC) that colonize secondary organs. However, DTC survival strategies to start metastatic outgrowth are unclear. The hostile (hypoxic, hypoglycemic) microenvironmental conditions of the bone marrow serve as an ideal model environment for investigation of DTC survival strategies under environmental stress. We investigated the breast cancer DTC cell line BC-M1 established from the bone marrow of a cancer patient by 2-D DIGE and MS analysis. We observed specific overexpression of the unfolded protein response (UPR) proteins Grp78, Grp94, and protein disulfide-isomerase in breast, lung, and prostate cancer DTC cell lines from the bone marrow. The UPR contributes to survival under adverse environmental conditions including chemotherapy. We show in cellular models that Grp78 expression of the UPR is regulated by tyrosine 1248 of ErbB-2. The breast cancer DTC cell lines shared stem/progenitor cell cancer phenotypes (CD44(high)/CD24(low)). Immunocytochemical staining of bone marrow samples from breast cancer patients confirmed in situ high expression of Grp78 and Grp94 in DTC of breast cancer patients, indicating the potential of both proteins as novel markers for DTC detection. Our results suggest the presence of a previously not recognized stress resistant DTC population that combines stem/progenitor attributes with an UPR phenotype.


Subject(s)
Breast Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Proteome/metabolism , Unfolded Protein Response/physiology , Blotting, Western , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Breast Neoplasms/pathology , Cell Hypoxia , Cell Line, Tumor , Cell Movement , Endoplasmic Reticulum Chaperone BiP , Female , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Humans , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Neoplasm Metastasis , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Neoplastic Stem Cells/pathology , Peptide Mapping , Phenotype , Proteome/chemistry , Proteomics/methods , Receptor, ErbB-2/chemistry , Receptor, ErbB-2/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
15.
BMC Cancer ; 10: 78, 2010 Mar 03.
Article in English | MEDLINE | ID: mdl-20199686

ABSTRACT

BACKGROUND: Increased transcription of oncogenes like the epidermal growth factor receptor (EGFR) is frequently caused by amplification of the whole gene or at least of regulatory sequences. Aim of this study was to pinpoint mechanistic parameters occurring during egfr copy number gains leading to a stable EGFR overexpression and high sensitivity to extracellular signalling. A deeper understanding of those marker events might improve early diagnosis of cancer in suspect lesions, early detection of cancer progression and the prediction of egfr targeted therapies. METHODS: The basal-like/stemness type breast cancer cell line subpopulation MDA-MB-468 CD44high/CD24-/low, carrying high egfr amplifications, was chosen as a model system in this study. Subclones of the heterogeneous cell line expressing low and high EGF receptor densities were isolated by cell sorting. Genomic profiling was carried out for these by means of SNP array profiling, qPCR and FISH. Cell cycle analysis was performed using the BrdU quenching technique. RESULTS: Low and high EGFR expressing MDA-MB-468 CD44+/CD24-/low subpopulations separated by cell sorting showed intermediate and high copy numbers of egfr, respectively. However, during cell culture an increase solely for egfr gene copy numbers in the intermediate subpopulation occurred. This shift was based on the formation of new cells which regained egfr gene copies. By two parametric cell cycle analysis clonal effects mediated through growth advantage of cells bearing higher egfr gene copy numbers could most likely be excluded for being the driving force. Subsequently, the detection of a fragile site distal to the egfr gene, sustaining uncapped telomere-less chromosomal ends, the ladder-like structure of the intrachromosomal egfr amplification and a broader range of egfr copy numbers support the assumption that dynamic chromosomal rearrangements, like breakage-fusion-bridge-cycles other than proliferation drive the gain of egfr copies. CONCLUSION: Progressive genome modulation in the CD44+/CD24-/low subpopulation of the breast cancer cell line MDA-MB-468 leads to different coexisting subclones. In isolated low-copy cells asymmetric chromosomal segregation leads to new cells with regained solely egfr gene copies. Furthermore, egfr regain resulted in enhanced signal transduction of the MAP-kinase and PI3-kinase pathway. We show here for the first time a dynamic copy number regain in basal-like/stemness cell type breast cancer subpopulations which might explain genetic heterogeneity. Moreover, this process might also be involved in adaptive growth factor receptor intracellular signaling which support survival and migration during cancer development and progression.


Subject(s)
Breast Neoplasms/metabolism , CD24 Antigen/biosynthesis , ErbB Receptors/genetics , Hyaluronan Receptors/biosynthesis , Cell Cycle , Cell Line, Tumor , Female , Flow Cytometry/methods , Gene Dosage , Gene Expression Profiling , Genetic Variation , Humans , Kinetics , Polymorphism, Single Nucleotide , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...