Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22269205

ABSTRACT

BackgroundAutopsy studies have provided valuable insights into the pathophysiology of COVID-19. Controversies remain whether the clinical presentation is due to direct organ damage by SARS-CoV-2 or secondary effects, e.g. by an overshooting immune response. SARS-CoV-2 detection in tissues by RT-qPCR and immunohistochemistry (IHC) or electron microscopy (EM) can help answer these questions, but a comprehensive evaluation of these applications is missing. MethodsWe assessed publications using IHC and EM for SARS-CoV-2 detection in autopsy tissues. We systematically evaluated commercially available antibodies against the SARS-CoV-2 spike protein and nucleocapsid, dsRNA, and non-structural protein Nsp3 in cultured cell lines and COVID-19 autopsy tissues. In a multicenter study, we evaluated specificity, reproducibility, and inter-observer variability of SARS-CoV-2 nucleocapsid staining. We correlated RT-qPCR viral tissue loads with semiquantitative IHC scoring. We used qualitative and quantitative EM analyses to refine criteria for ultrastructural identification of SARS-CoV-2. FindingsPublications show high variability in the detection and interpretation of SARS-CoV-2 abundance in autopsy tissues by IHC or EM. In our study, we show that IHC using antibodies against SARS-CoV-2 nucleocapsid yields the highest sensitivity and specificity. We found a positive correlation between presence of viral proteins by IHC and RT-qPCR-determined SARS-CoV-2 viral RNA load (r=-0.83, p-value <0.0001). For EM, we refined criteria for virus identification and also provide recommendations for optimized sampling and analysis. 116 of 122 publications misinterpret cellular structures as virus using EM or show only insufficient data. We provide publicly accessible digitized EM and IHC sections as a reference and for training purposes. InterpretationSince detection of SARS-CoV-2 in human autopsy tissues by IHC and EM is difficult and frequently incorrect, we propose criteria for a re-evaluation of available data and guidance for further investigations of direct organ effects by SARS-CoV-2. Key messagesO_LIDetection of SARS-CoV-2 proteins by IHC in autopsy tissues is less sensitive in comparison to SARS-CoV-2 RNA detection by RT-qPCR. C_LIO_LIFor determination of SARS-CoV-2 protein positive cells by IHC in autopsy tissues, detection of spike protein is less sensitive than nucleocapsid protein. C_LIO_LICorrect identification of SARS-CoV-2 particles in human samples by EM is limited to the respiratory system. C_LIO_LIInterpretation of IHC and EM should follow substantiated consensus criteria to enhance accuracy. C_LIO_LIExisting datasets describing SARS-CoV-2 presence in human autopsy tissues need to be critically re-evaluated. C_LI O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=127 SRC="FIGDIR/small/22269205v1_ufig1.gif" ALT="Figure 1"> View larger version (44K): org.highwire.dtl.DTLVardef@eafd97org.highwire.dtl.DTLVardef@1aed770org.highwire.dtl.DTLVardef@1c21ab9org.highwire.dtl.DTLVardef@68a101_HPS_FORMAT_FIGEXP M_FIG C_FIG

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-472619

ABSTRACT

BackgroundAcute kidney injury (AKI) occurs frequently in critically ill patients and is associated with adverse outcomes. Cellular mechanisms underlying AKI and kidney cell responses to injury remain incompletely understood. MethodsWe performed single-nuclei transcriptomics, bulk transcriptomics, molecular imaging studies, and conventional histology on kidney tissues from 8 individuals with severe AKI (stage 2 or 3 according to Kidney Disease: Improving Global Outcomes (KDIGO) criteria). Specimens were obtained within 1-2 hours after individuals had succumbed to critical illness associated with respiratory infections, with 4 of 8 individuals diagnosed with COVID-19. Control kidney tissues were obtained post-mortem or after nephrectomy from individuals without AKI. ResultsHigh-depth single cell-resolved gene expression data of human kidneys affected by AKI revealed enrichment of novel injury-associated cell states within the major cell types of the tubular epithelium, in particular in proximal tubules, thick ascending limbs and distal convoluted tubules. Four distinct, hierarchically interconnected injured cell states were distinguishable and characterized by transcriptome patterns associated with oxidative stress, hypoxia, interferon response, and epithelial-to-mesenchymal transition, respectively. Transcriptome differences between individuals with AKI were driven primarily by the cell type-specific abundance of these four injury subtypes rather than by private molecular responses. AKI-associated changes in gene expression between individuals with and without COVID-19 were similar. ConclusionThe study provides an extensive resource of the cell type-specific transcriptomic responses associated with critical illness-associated AKI in humans, highlighting recurrent disease-associated signatures and inter-individual heterogeneity. Personalized molecular disease assessment in human AKI may foster the development of tailored therapies.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-465121

ABSTRACT

Epidemiological data demonstrate that SARS-CoV-2 variants of concern (VOC) B.1.1.7 and B.1.617.2 are more transmissible and infections are associated with a higher mortality than non-VOC virus infections. Phenotypic properties underlying their enhanced spread in the human population remain unknown. B.1.1.7 virus isolates displayed inferior or equivalent spread in most cell lines and primary cells compared to an ancestral B.1 SARS-CoV-2, and were outcompeted by the latter. Lower infectivity and delayed entry kinetics of B.1.1.7 viruses were accompanied by inefficient proteolytic processing of spike. B.1.1.7 viruses failed to escape from neutralizing antibodies, but slightly dampened induction of innate immunity. The bronchial cell line NCI-H1299 supported 24- and 595-fold increased growth of B.1.1.7 and B.1.617.2 viruses, respectively, in the absence of detectable ACE2 expression and in a spike-determined fashion. Superior spread in NCI-H1299 cells suggests that VOCs employ a distinct set of cellular cofactors that may be unavailable in standard cell lines.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-252320

ABSTRACT

The emergence of SARS-CoV-2 led to pandemic spread of coronavirus disease 2019 (COVID-19), manifesting with respiratory symptoms and multi-organ dysfunction. Detailed characterization of virus-neutralizing antibodies and target epitopes is needed to understand COVID-19 pathophysiology and guide immunization strategies. Among 598 human monoclonal antibodies (mAbs) from ten COVID-19 patients, we identified 40 strongly neutralizing mAbs. The most potent mAb CV07-209 neutralized authentic SARS-CoV-2 with IC50 of 3.1 ng/ml. Crystal structures of two mAbs in complex with the SARS-CoV-2 receptor-binding domain at 2.55 and 2.70 [A] revealed a direct block of ACE2 attachment. Interestingly, some of the near-germline SARS-CoV-2 neutralizing mAbs reacted with mammalian self-antigens. Prophylactic and therapeutic application of CV07-209 protected hamsters from SARS-CoV-2 infection, weight loss and lung pathology. Our results show that non-self-reactive virus-neutralizing mAbs elicited during SARS-CoV-2 infection are a promising therapeutic strategy.

SELECTION OF CITATIONS
SEARCH DETAIL
...