Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
FEBS J ; 291(9): 1925-1943, 2024 May.
Article in English | MEDLINE | ID: mdl-38349812

ABSTRACT

Functional bacterial amyloids play a crucial role in the formation of biofilms, which mediate chronic infections and contribute to antimicrobial resistance. This study focuses on the FapC amyloid fibrillar protein from Pseudomonas, a major contributor to biofilm formation. We investigate the initial steps of FapC amyloid formation and the impact of the chaperone-like protein FapA on this process. Using solution nuclear magnetic resonance (NMR), we recently showed that both FapC and FapA are intrinsically disordered proteins (IDPs). Here, the secondary structure propensities (SSPs) are compared to alphafold (DeepMind, protein structure prediction tool/algorithm: https://alphafold.ebi.ac.uk/) models. We further demonstrate that the FapA chaperone interacts with FapC and significantly slows down the formation of FapC fibrils. Our NMR titrations reveal ~ 18% of the resonances show FapA-induced chemical shift perturbations (CSPs), which has not been previously observed, the largest being for A82, N201, C237, C240, A241, and G245. These sites may suggest a specific interaction site and/or hotspots of fibrillation inhibition/control interface at the repeat-1 (R1)/loop-2 (L2) and L2/R3 transition areas and at the C-terminus of FapC. Remarkably, ~ 90% of FapA NMR signals exhibit substantial CSPs upon titration with FapC, the largest being for S63, A69, A80, and I92. A temperature-dependent effect of FapA was observed on FapC by thioflavin T (ThT) and NMR experiments. This study provides a detailed understanding of the interaction between the FapA and FapC, shedding light on the regulation and slowing down of amyloid formation, and has important implications for the development of therapeutic strategies targeting biofilms and associated infections.


Subject(s)
Amyloid , Bacterial Proteins , Biofilms , Molecular Chaperones , Biofilms/drug effects , Biofilms/growth & development , Amyloid/metabolism , Amyloid/chemistry , Molecular Chaperones/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Pseudomonas/metabolism , Protein Structure, Secondary , Nuclear Magnetic Resonance, Biomolecular
2.
Int J Mol Sci ; 25(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38203273

ABSTRACT

Phenol-soluble modulins (PSMs) are key virulence factors of S. aureus, and they comprise the structural scaffold of biofilm as they self-assemble into functional amyloids. They have been shown to interact with cell membranes as they display toxicity towards human cells through cell lysis, with αPSM3 being the most cytotoxic. In addition to causing cell lysis in mammalian cells, PSMs have also been shown to interact with bacterial cell membranes through antimicrobial effects. Here, we present a study on the effects of lipid bilayers on the aggregation mechanism of αPSM using chemical kinetics to study the effects of lipid vesicles on the aggregation kinetics and using circular dichroism (CD) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) to investigate the corresponding secondary structure of the aggregates. We found that the effects of lipid bilayers on αPSM aggregation were not homogeneous between lipid type and αPSM peptides, although none of the lipids caused changes in the dominating aggregation mechanism. In the case of αPSM3, all types of lipids slowed down aggregation to a varying degree, with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) having the most pronounced effect. For αPSM1, lipids had opposite effects, where DOPC decelerated aggregation and lipopolysaccharide (LPS) accelerated the aggregation, while 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DOPG) had no effect. For αPSM4, both DOPG and LPS accelerated the aggregation, but only at high concentration, while DOPC showed no effect. None of the lipids was capable of inducing aggregation of αPSM2. Our data reveal a complex interaction pattern between PSMs peptides and lipid bilayers that causes changes in the aggregation kinetics by affecting different kinetic parameters along with only subtle changes in morphology.


Subject(s)
Lipid Bilayers , Lipopolysaccharides , Humans , Animals , Staphylococcus aureus , Amyloidogenic Proteins , Cell Membrane , Mammals
3.
J Biol Chem ; 298(12): 102688, 2022 12.
Article in English | MEDLINE | ID: mdl-36370848

ABSTRACT

Parkinson's disease is a neurodegenerative movement disorder associated with the intracellular aggregation of α-synuclein (α-syn). Cytotoxicity is mainly associated with the oligomeric species (αSOs) formed at early stages in α-syn aggregation. Consequently, there is an intense focus on the discovery of novel inhibitors such as peptides to inhibit oligomer formation and toxicity. Here, using peptide arrays, we identified nine peptides with high specificity and affinity for αSOs. Of these, peptides p194, p235, and p249 diverted α-syn aggregation from fibrils to amorphous aggregates with reduced ß-structures and increased random coil content. However, they did not reduce αSO cytotoxicity and permeabilization of large anionic unilamellar vesicles. In parallel, we identified a non-self-aggregating peptide (p216), derived from the cell-penetrating peptide penetratin, which showed 12-fold higher binding affinity to αSOs than to α-syn monomers (Kdapp 2.7 and 31.2 µM, respectively). p216 reduced αSOs-induced large anionic unilamellar vesicle membrane permeability at 10-1 to 10-3 mg/ml by almost 100%, was not toxic to SH-SY5Y cells, and reduced αSOs cytotoxicity by about 20%. We conclude that p216 is a promising starting point from which to develop peptides targeting toxic αSOs in Parkinson's disease.


Subject(s)
Cell-Penetrating Peptides , Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Cell-Penetrating Peptides/isolation & purification , Cell-Penetrating Peptides/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Cell Line, Tumor
4.
Sci Adv ; 8(32): eabn6831, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35960802

ABSTRACT

Fibrillar protein aggregates are a hallmark of a range of human disorders, from prion diseases to dementias, but are also encountered in several functional contexts. Yet, the fundamental links between protein assembly mechanisms and their functional or pathological roles have remained elusive. Here, we analyze the aggregation kinetics of a large set of proteins that self-assemble by a nucleated-growth mechanism, from those associated with disease, over those whose aggregates fulfill functional roles in biology, to those that aggregate only under artificial conditions. We find that, essentially, all such systems, regardless of their biological role, are capable of self-replication. However, for aggregates that have evolved to fulfill a structural role, the rate of self-replication is too low to be significant on the biologically relevant time scale. By contrast, all disease-related proteins are able to self-replicate quickly compared to the time scale of the associated disease. Our findings establish the ubiquity of self-replication and point to its potential importance across aggregation-related disorders.

5.
Chem Sci ; 13(22): 6457-6477, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35756505

ABSTRACT

Protein aggregation and amyloid formation have historically been linked with various diseases such as Alzheimer's and Parkinson's disease, but recently functional amyloids have gained a great deal of interest in not causing a disease and having a distinct function in vivo. Functional bacterial amyloids form the structural scaffold in bacterial biofilms and provide a survival strategy for the bacteria along with antibiotic resistance. The formation of functional amyloids happens extracellularly which differs from most disease related amyloids. Studies of functional amyloids have revealed several distinctions compared to disease related amyloids including primary structures designed to optimize amyloid formation while still retaining a controlled assembly of the individual subunits into classical cross-ß-sheet structures, along with a unique cross-α-sheet amyloid fold. Studies have revealed that functional amyloids interact with components found in the extracellular matrix space such as lipids from membranes and polymers from the biofilm. Intriguingly, a level of complexity is added as functional amyloids also interact with several disease related amyloids and a causative link has even been established between functional amyloids and neurodegenerative diseases. It is hence becoming increasingly clear that functional amyloids are not inert protein structures found in bacterial biofilms but interact with many different components including human proteins related to pathology. Gaining a clear understanding of the factors governing the interactions will lead to improved strategies to combat biofilm associated infections and the correlated antibiotic resistance. In the current review we summarize the current state of the art knowledge on this exciting and fast growing research field of biofilm forming bacterial functional amyloids, their structural features and interaction partners.

6.
J Biol Chem ; 297(2): 100953, 2021 08.
Article in English | MEDLINE | ID: mdl-34270957

ABSTRACT

Phenol-soluble modulins (PSMs), such as α-PSMs, ß-PSMs, and δ-toxin, are virulence peptides secreted by different Staphylococcus aureus strains. PSMs are able to form amyloid fibrils, which may strengthen the biofilm matrix that promotes bacterial colonization of and extended growth on surfaces (e.g., cell tissue) and increases antibiotic resistance. Many components contribute to biofilm formation, including the human-produced highly sulfated glycosaminoglycan heparin. Although heparin promotes S. aureus infection, the molecular basis for this is unclear. Given that heparin is known to induce fibrillation of a wide range of proteins, we hypothesized that heparin aids bacterial colonization by promoting PSM fibrillation. Here, we address this hypothesis using a combination of thioflavin T-fluorescence kinetic studies, CD, FTIR, electron microscopy, and peptide microarrays to investigate the mechanism of aggregation, the structure of the fibrils, and identify possible binding regions. We found that heparin accelerates fibrillation of all α-PSMs (except PSMα2) and δ-toxin but inhibits ß-PSM fibrillation by blocking nucleation or reducing fibrillation levels. Given that S. aureus secretes higher levels of α-PSM than ß-PSM peptides, heparin is therefore likely to promote fibrillation overall. Heparin binding is driven by multiple positively charged lysine residues in α-PSMs and δ-toxins, the removal of which strongly reduced binding affinity. Binding of heparin did not affect the structure of the resulting fibrils, that is, the outcome of the aggregation process. Rather, heparin provided a scaffold to catalyze or inhibit fibrillation. Based on our findings, we speculate that heparin may strengthen the bacterial biofilm and therefore enhance colonization via increased PSM fibrillation.


Subject(s)
Peptides , Staphylococcus aureus , Bacterial Toxins , Biofilms/growth & development , Kinetics , Peptides/metabolism , Virulence
7.
Microorganisms ; 9(1)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430169

ABSTRACT

The pathogen Staphylococcus aureus is recognized as one of the most frequent causes of biofilm-associated infections. The recently identified phenol-soluble modulin (PSM) peptides act as the key molecular effectors of staphylococcal biofilm maturation and promote the formation of an aggregated fibril structure. The aim of this study was to evaluate the effect of various pH values on the formation of functional amyloids of individual PSM peptides. Here, we combined a range of biophysical, chemical kinetics and microscopic techniques to address the structure and aggregation mechanism of individual PSMs under different conditions. We established that there is a pH-induced switch in PSM aggregation kinetics. Different lag times and growth of fibrils were observed, which indicates that there was no clear correlation between the rates of fibril elongation among different PSMs. This finding confirms that pH can modulate the aggregation properties of these peptides and suggest a deeper understanding of the formation of aggregates, which represents an important basis for strategies to interfere and might help in reducing the risk of biofilm-related infections.

8.
Elife ; 92020 12 01.
Article in English | MEDLINE | ID: mdl-33259287

ABSTRACT

The infective ability of the opportunistic pathogen Staphylococcus aureus, recognized as the most frequent cause of biofilm-associated infections, is associated with biofilm-mediated resistance to host immune response. Phenol-soluble modulins (PSM) comprise the structural scaffold of S. aureus biofilms through self-assembly into functional amyloids, but the role of individual PSMs during biofilm formation remains poorly understood and the molecular pathways of PSM self-assembly are yet to be identified. Here we demonstrate high degree of cooperation between individual PSMs during functional amyloid formation. PSMα3 initiates the aggregation, forming unstable aggregates capable of seeding other PSMs resulting in stable amyloid structures. Using chemical kinetics we dissect the molecular mechanism of aggregation of individual PSMs showing that PSMα1, PSMα3 and PSMß1 display secondary nucleation whereas PSMß2 aggregates through primary nucleation and elongation. Our findings suggest that various PSMs have evolved to ensure fast and efficient biofilm formation through cooperation between individual peptides.


Subject(s)
Amyloidogenic Proteins/metabolism , Bacterial Proteins/metabolism , Biofilms/growth & development , Staphylococcus aureus/metabolism , Virulence Factors/metabolism , Amyloidogenic Proteins/chemistry , Bacterial Proteins/chemistry , Kinetics , Phenol/chemistry , Protein Aggregates , Protein Stability , Protein Structure, Secondary , Solubility , Solvents/chemistry , Staphylococcus aureus/growth & development , Staphylococcus aureus/pathogenicity , Structure-Activity Relationship , Virulence Factors/chemistry
9.
Macromol Rapid Commun ; 40(8): e1800898, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30840348

ABSTRACT

Silk fibroin is a natural protein obtained from the Bombyx mori silkworm. In addition to being the key structural component in silkworm cocoons, it also has the propensity to self-assemble in vitro into hierarchical structures with desirable properties such as high levels of mechanical strength and robustness. Furthermore, it is an appealing biopolymer due to its biocompatability, low immunogenicity, and lack of toxicity, making it a prime candidate for biomedical material applications. Here, it is demonstrated that nanofibrils formed by reconstituted silk fibroin can be engineered into supramolecular microgels using a soft lithography-based microfluidic approach. Building on these results, a potential application for these protein microgels to encapsulate and release small molecules in a controlled manner is illustrated. Taken together, these results suggest that the tailored self-assembly of biocompatible and biodegradable silk nanofibrils can be used to generate functional micromaterials for a range of potential applications in the biomedical and pharmaceutical fields.


Subject(s)
Fibroins/chemistry , Silk/chemistry , Animals , Biocompatible Materials/chemistry , Bombyx , Gels/chemistry , Macromolecular Substances/chemistry
10.
Sci Rep ; 9(1): 2288, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30783136

ABSTRACT

The aggregation of alpha-synuclein (α-syn) is a pathological feature of a number of neurodegenerative conditions, including Parkinson's disease. Genetic mutations, abnormal protein synthesis, environmental stress, and aging have all been implicated as causative factors in this process. The importance of water in the polymerisation of monomers, however, has largely been overlooked. In the present study, we highlight the role of hyperosmotic stress in inducing human α-syn to aggregate in cells in vitro, through rapid treatment of the cells with three different osmolytes: sugar, salt and alcohol. This effect is cell-dependent and not due to direct protein-osmolyte interaction, and is specific for α-syn when compared to other neurodegeneration-related proteins, such as Tau or Huntingtin. This new property of α-syn not only highlights a unique aspect of its behaviour which may have some relevance for disease states, but may also be useful as a screening test for compounds to inhibit the aggregation of α-syn in vitro.


Subject(s)
Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Animals , Benzothiazoles/chemistry , Blotting, Western , Cell Death/drug effects , Cell Line , Cell Survival/drug effects , Electrophoresis, Polyacrylamide Gel , HEK293 Cells , Hot Temperature , Humans , Hydrogen Peroxide/pharmacology , L-Lactate Dehydrogenase/metabolism , Mice , Osmolar Concentration , Sodium Chloride/pharmacology , Sodium Dodecyl Sulfate/pharmacology , Urea/pharmacology
11.
mBio ; 10(1)2019 01 08.
Article in English | MEDLINE | ID: mdl-30622185

ABSTRACT

A wide range of bacterial pathogens have been shown to form biofilms, which significantly increase their resistance to environmental stresses, such as antibiotics, and are thus of central importance in the context of bacterial diseases. One of the major structural components of these bacterial biofilms are amyloid fibrils, yet the mechanism of fibril assembly and its importance for biofilm formation are currently not fully understood. By studying fibril formation in vitro, in a model system of two common but unrelated biofilm-forming proteins, FapC from Pseudomonas fluorescens and CsgA from Escherichia coli, we found that the two proteins have a common aggregation mechanism. In both systems, fibril formation proceeds via nucleated growth of linear fibrils exhibiting similar measured rates of elongation, with negligible fibril self-replication. These similarities between two unrelated systems suggest that convergent evolution plays a key role in tuning the assembly kinetics of functional amyloid fibrils and indicates that only a narrow window of mechanisms and assembly rates allows for successful biofilm formation. Thus, the amyloid assembly reaction is likely to represent a means for controlling biofilm formation, both by the organism and by possible inhibitory drugs.IMPORTANCE Biofilms are generated by bacteria, embedded in the formed extracellular matrix. The biofilm's function is to improve the survival of a bacterial colony through, for example, increased resistance to antibiotics or other environmental stresses. Proteins secreted by the bacteria act as a major structural component of this extracellular matrix, as they self-assemble into highly stable amyloid fibrils, making the biofilm very difficult to degrade by physical and chemical means once formed. By studying the self-assembly mechanism of the fibrils from their monomeric precursors in two unrelated bacteria, our experimental and theoretical approaches shed light on the mechanism of functional amyloid assembly in the context of biofilm formation. Our results suggest that fibril formation may be a rate-limiting step in biofilm formation, which in turn has implications on the protein self-assembly reaction as a target for potential antibiotic drugs.


Subject(s)
Amyloid/metabolism , Biofilms/growth & development , Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Protein Multimerization , Pseudomonas fluorescens/physiology , Chemical Phenomena , Macromolecular Substances/metabolism , Protein Aggregates
12.
Protein Sci ; 28(3): 633-642, 2019 03.
Article in English | MEDLINE | ID: mdl-30592554

ABSTRACT

Functional amyloid (FA) is widespread in bacteria and serves multiple purposes such as strengthening of biofilm and contact with eukaryotic hosts. Unlike pathological amyloid, FA has been subjected to evolutionary optimization which is likely to be reflected in the aggregation mechanism. FA from different bacteria, including Escherichia coli (CsgA) and Pseudomonas (FapC), contains a number of imperfect repeats which may be key to efficient aggregation. Here we report on the aggregative behavior of FapC constructs which represent all single, double, and triple deletions of the protein's three imperfect repeats. Analysis of the fibrillation kinetics by the program Amylofit reveals that the removal of these repeats increases the tendency of the growing fibrils to fragment and also generally increases aggregation half-times. Remarkably, even the mutant lacking all three repeats was able to fibrillate, although fibrillation was much more irregular and led to significantly altered and destabilized fibrils. We conclude that imperfect repeats can promote fibrillation efficiency thanks to their modular design, though the context of the imperfect repeats also plays a significant role.


Subject(s)
Amyloid/chemistry , Amyloidogenic Proteins/chemistry , Pseudomonas/chemistry , Amino Acid Sequence , Amyloid/ultrastructure , Humans , Kinetics , Models, Molecular , Protein Aggregates , Pseudomonas Infections/microbiology
13.
J Mol Biol ; 430(8): 1116-1140, 2018 04 13.
Article in English | MEDLINE | ID: mdl-29524512

ABSTRACT

Numerous mutations in the corneal protein TGFBIp lead to opaque extracellular deposits and corneal dystrophies (CDs). Here we elucidate the molecular origins underlying TGFBIp's mutation-induced increase in aggregation propensity through comprehensive biophysical and bioinformatic analyses of mutations associated with every major subtype of TGFBIp-linked CDs including lattice corneal dystrophy (LCD) and three subtypes of granular corneal dystrophy (GCD 1-3). LCD mutations at buried positions in the C-terminal Fas1-4 domain lead to decreased stability. GCD variants show biophysical profiles distinct from those of LCD mutations. GCD 1 and 3 mutations reduce solubility rather than stability. Half of the 50 positions within Fas1-4 most sensitive to mutation are associated with at least one known disease-causing mutation, including 10 of the top 11 positions. Thus, TGFBIp aggregation is driven by mutations that despite their physico-chemical diversity target either the stability or solubility of Fas1-4 in predictable ways, suggesting straightforward general therapeutic strategies.


Subject(s)
Corneal Dystrophies, Hereditary/genetics , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/genetics , Mutation , Transforming Growth Factor beta/chemistry , Transforming Growth Factor beta/genetics , Circular Dichroism , Genetic Predisposition to Disease , Humans , Models, Molecular , Protein Domains , Protein Stability , Protein Structure, Secondary , Solubility
14.
Anal Chem ; 89(22): 12306-12313, 2017 11 21.
Article in English | MEDLINE | ID: mdl-28972786

ABSTRACT

The self-replicating properties of proteins into amyloid fibrils is a common phenomenon and underlies a variety of neurodegenerative diseases. Because propagation-active fibrils are chemically indistinguishable from innocuous aggregates and monomeric precursors, their detection requires measurements of their replicative capacity. Here we present a digital amyloid quantitative assay (d-AQuA) with insulin as model protein for the absolute quantification of single replicative units, propagons. D-AQuA is a microfluidics-based technology that performs miniaturized simultaneous propagon-induced amplification chain reactions within hundreds to thousands of picoliter-sized droplets. At limiting dilutions, the d-AQuA reactions follow a stochastic regime indicative of the detection of single propagons. D-AQuA thus enables absolute quantification of single propagons present in a given sample at very low concentrations. The number of propagons quantified by d-AQuA was similar to that of fibrillar insulin aggregates detected by atomic-force microscopy and to an equivalent microplate-based assay, providing independent evidence for the identity of insulin propagons with a subset of morphologically defined protein aggregates. The sensitivity, precision, and accuracy of d-AQuA enable it to be suitable for multiple biotechnological and medical applications.


Subject(s)
Amyloid beta-Peptides/analysis , Microfluidic Analytical Techniques , Humans , Microscopy, Atomic Force , Particle Size , Surface Properties
15.
Sci Rep ; 6: 24656, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27098162

ABSTRACT

Polypeptide aggregation into amyloid is linked with several debilitating human diseases. Despite the inherent risk of aggregation-induced cytotoxicity, bacteria control the export of amyloid-prone subunits and assemble adhesive amyloid fibres during biofilm formation. An Escherichia protein, CsgC potently inhibits amyloid formation of curli amyloid proteins. Here we unlock its mechanism of action, and show that CsgC strongly inhibits primary nucleation via electrostatically-guided molecular encounters, which expands the conformational distribution of disordered curli subunits. This delays the formation of higher order intermediates and maintains amyloidogenic subunits in a secretion-competent form. New structural insight also reveal that CsgC is part of diverse family of bacterial amyloid inhibitors. Curli assembly is therefore not only arrested in the periplasm, but the preservation of conformational flexibility also enables efficient secretion to the cell surface. Understanding how bacteria safely handle amyloidogenic polypeptides contribute towards efforts to control aggregation in disease-causing amyloids and amyloid-based biotechnological applications.


Subject(s)
Amyloid/chemistry , Escherichia coli Proteins/chemistry , Molecular Chaperones/chemistry , Static Electricity , Active Transport, Cell Nucleus , Amyloid/classification , Amyloid/genetics , Amyloid/metabolism , Escherichia coli Proteins/metabolism , Kinetics , Molecular Chaperones/metabolism , Osmolar Concentration , Protein Binding , Protein Conformation , Protein Folding
16.
Biomol NMR Assign ; 10(1): 25-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26275916

ABSTRACT

The transforming growth factor beta induced protein (TGFBIp) is a major protein component of the human cornea. Mutations occurring in TGFBIp may cause corneal dystrophies, which ultimately lead to loss of vision. The majority of the disease-causing mutations are located in the C-terminal domain of TGFBIp, referred as the fourth fascilin-1 (FAS1-4) domain. In the present study the FAS1-4 Ala546Thr, a mutation that causes lattice corneal dystrophy, was investigated in dimethylsulfoxide using liquid-state NMR spectroscopy, to enable H/D exchange strategies for identification of the core formed in mature fibrils. Isotope-labeled fibrillated FAS1-4 A546T was dissolved in a ternary mixture 95/4/1 v/v/v% dimethylsulfoxide/water/trifluoroacetic acid, to obtain and assign a reference 2D (1)H-(15)N HSQC spectrum for the H/D exchange analysis. Here, we report the near-complete assignments of backbone and aliphatic side chain (1)H, (13)C and (15)N resonances for unfolded FAS1-4 A546T at 25 °C.


Subject(s)
Dimethyl Sulfoxide/pharmacology , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/metabolism , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Nuclear Magnetic Resonance, Biomolecular , Protein Denaturation/drug effects , Transforming Growth Factor beta/chemistry , Transforming Growth Factor beta/metabolism , Amino Acid Sequence , Carbon Isotopes , Humans , Nitrogen Isotopes , Protein Domains , Tritium
17.
Biochim Biophys Acta ; 1854(12): 1890-1897, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26284878

ABSTRACT

Applying fibril-forming peptides in nanomaterial design is still challenged by the difficulties in understanding and controlling how fibrils form. The present work investigates the influence of motional restriction on peptide fibrillation. We use cyclotriphosphazene and cyclodextrin as templates to make conjugates of the fibril-forming core of human islet amyloid polypeptide. Attachment of the peptide to the templates resulted in multimers containing six peptide fragments at different positions. ThT fluorescence, CD and FTIR spectroscopy, and AFM and TEM imaging reveal that in both conjugates the peptide retained its fibrillating properties and formed fibrils. However, the conjugate fibrils formed more rapidly than the free peptide and were long and thin, as opposed to the thick and twisted morphology of the intact peptide. Thus the motional restrictions introduced by the scaffold modulate the structure of the fibrils but do not impede the actual fibrillation process.


Subject(s)
Amyloidogenic Proteins/chemistry , Peptide Fragments/chemistry , Microscopy, Electron, Transmission
19.
Biochim Biophys Acta ; 1848(9): 1897-907, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25666871

ABSTRACT

The deposition of amyloid material has been associated with many different diseases. Although these diseases are very diverse the amyloid material share many common features such as cross-ß-sheet structure of the backbone of the proteins deposited. Another common feature of the aggregation process for a wide variety of proteins is the presence of prefibrillar oligomers. These oligomers are linked to the cytotoxicity occurring during the aggregation of proteins. These prefibrillar oligomers interact extensively with lipid membranes and in some cases leads to destabilization of lipid membranes. This interaction is however highly dependent on the nature of both the oligomer and the lipids. Anionic lipids are often required for interaction with the lipid membrane while increased exposure of hydrophobic patches from highly dynamic protein oligomers are structural determinants of cytotoxicity of the oligomers. To explore the oligomer lipid interaction in detail the interaction between oligomers of α-synuclein and the 4th fasciclin-1 domain of TGFBIp with lipid membranes will be examined here. For both proteins the dynamic species are the ones causing membrane destabilization and the membrane interaction is primarily seen when the lipid membranes contain anionic lipids. Hence the dynamic nature of oligomers with exposed hydrophobic patches alongside the presence of anionic lipids could be essential for the cytotoxicity observed for prefibrillar oligomers in general. This article is part of a Special Issue entitled: Lipid-protein interactions.


Subject(s)
Membrane Lipids/chemistry , Membrane Proteins/chemistry , Protein Folding , Protein Multimerization , Animals , Cell Membrane/chemistry , Cell Membrane/metabolism , Humans , Membrane Lipids/metabolism , Membrane Proteins/metabolism , Models, Molecular , Neurodegenerative Diseases/metabolism , Protein Binding
20.
Biochemistry ; 53(44): 6968-80, 2014 Nov 11.
Article in English | MEDLINE | ID: mdl-25334015

ABSTRACT

The formation of aggregated fibrillar ß-sheet structures has been proposed to be a generic feature of proteins. Aggregation propensity is highly sequence dependent, and often only part of the protein is incorporated into the fibril core. Therefore, shorter peptide fragments corresponding to the fibril core are attractive fibrillation models. The use of peptide models introduces new termini into the fibrils, yet little attention has been paid to the role these termini may play in fibrillation. Here, we report that terminal modifications of a 10-residue peptide fragment of human islet amyloid polypeptide strongly affect fibrillation kinetics and the resulting fibril morphology. Capping of the N-terminus abolishes fibrillation, while C-terminal capping results in fibrils with a twisted morphology. Peptides with either both termini free or both termini capped form flat fibrils. Molecular dynamics simulations reveal that the N-terminal acetyl cap folds up and interacts with the peptide's hydrophobic side chains, while the uncapped N-terminus in the C-terminally capped version results in twisting of the fibrils due to charge repulsion from the free N-termini. Our results highlight the role of terminal interactions in fibrillation of small peptides and provide molecular insight into the consequences of C-terminal modifications frequently found in peptide hormones in vivo.


Subject(s)
Amyloid/chemistry , Islet Amyloid Polypeptide/chemistry , Amino Acid Sequence , Humans , Hydrophobic and Hydrophilic Interactions , Kinetics , Molecular Dynamics Simulation , Peptide Fragments/chemistry , Protein Aggregation, Pathological , Protein Processing, Post-Translational , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...