Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Med Eng Phys ; 126: 104136, 2024 04.
Article in English | MEDLINE | ID: mdl-38621835

ABSTRACT

Computer representations of three-dimensional (3D) geometries are crucial for simulating systems and processes in engineering and science. In medicine, and more specifically, biomechanics and orthopaedics, obtaining and using 3D geometries is critical to many workflows. However, while many tools exist to obtain 3D geometries of organic structures, little has been done to make them usable for their intended medical purposes. Furthermore, many of the proposed tools are proprietary, limiting their use. This work introduces two novel algorithms based on Generalized Regression Neural Networks (GRNN) and 4 processes to perform mesh morphing and overclosure adjustment. These algorithms were implemented, and test cases were used to validate them against existing algorithms to demonstrate improved performance. The resulting algorithms demonstrate improvements to existing techniques based on Radial Basis Function (RBF) networks by converting to GRNN-based implementations. Implementations in MATLAB of these algorithms and the source code are publicly available at the following locations: https://github.com/thor-andreassen/femors; https://simtk.org/projects/femors-rbf; https://www.mathworks.com/matlabcentral/fileexchange/120353-finite-element-morphing-overclosure-reduction-and-slicing.


Subject(s)
Algorithms , Neural Networks, Computer , Finite Element Analysis , Software , Biomechanical Phenomena
2.
J Biomech Eng ; 145(12)2023 12 01.
Article in English | MEDLINE | ID: mdl-37796636

ABSTRACT

Model reproducibility is a point of emphasis for the National Institutes of Health (NIH) and in science, broadly. As the use of computational modeling in biomechanics and orthopedics grows, so does the need to assess the reproducibility of modeling workflows and simulation predictions. The long-term goal of the KneeHub project is to understand the influence of potentially subjective decisions, thus the modeler's "art", on the reproducibility and predictive uncertainty of computational knee joint models. In this paper, we report on the model calibration phase of this project, during which five teams calibrated computational knee joint models of the same specimens from the same specimen-specific joint mechanics dataset. We investigated model calibration approaches and decisions, and compared calibration workflows and model outcomes among the teams. The selection of the calibration targets used in the calibration workflow differed greatly between the teams and was influenced by modeling decisions related to the representation of structures, and considerations for computational cost and implementation of optimization. While calibration improved model performance, differences in the postcalibration ligament properties and predicted kinematics were quantified and discussed in the context of modeling decisions. Even for teams with demonstrated expertise, model calibration is difficult to foresee and plan in detail, and the results of this study underscore the importance of identification and standardization of best practices for data sharing and calibration.


Subject(s)
Knee Joint , Workflow , Reproducibility of Results , Calibration , Biomechanical Phenomena , Computer Simulation , Finite Element Analysis
3.
J Biomech ; 149: 111487, 2023 03.
Article in English | MEDLINE | ID: mdl-36868041

ABSTRACT

Representative data of asymptomatic, native-knee kinematics is important when studying changes in knee function across the lifespan. High-speed stereo radiography (HSSR) provides a reliable measure of knee kinematics to <1 mm of translation and 1° of rotation, but studies often have limited statistical power to make comparisons between groups or measure the contribution of individual variability. The purpose of this study is to examine in vivo condylar kinematics to quantify the transverse center-of-rotation, or pivot, location across the flexion range and challenge the medial-pivot paradigm in asymptomatic knee kinematics. We quantified the pivot location during supine leg press, knee extension, standing lunge, and gait for 53 middle-aged and older adults (27 men; 26 women: 50.8 ± 7.0 yrs, 1.75 ± 0.1 m, 79.1 ± 15.4 kg). A central- to medial-pivot location was identified for all activities with increased knee flexion associated with posterior translation of the center-of-rotation. The association between knee angle and anterior-posterior center-of-rotation location was not as strong as the relation between medial-lateral and anterior-posterior location, excluding gait. The Pearson's correlation for gait was stronger between knee angle and anterior-posterior center-of-rotation location (P < 0.001) than medial-lateral and anterior-posterior location (P = 0.0122). Individual variability accounted for a measurable proportion in variance explained of center-of-rotation location. Unique to gait, the lateral translation of center-of-rotation location resulted in the anterior translation of center-of-rotation at <10° knee flexion. Furthermore, no association between vertical ground-reaction force and center-of-rotation was identified.


Subject(s)
Gait , Knee Joint , Male , Middle Aged , Female , Humans , Aged , Knee Joint/diagnostic imaging , Rotation , Social Group , Standing Position
4.
Sci Data ; 10(1): 34, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36653365

ABSTRACT

Models and simulations of human function impact medicine and medical technology. Particularly, musculoskeletal modeling provides an avenue for insight into the human body, which might not be otherwise possible. However, reaching the ultimate goal of functional multi-scale human models has been slowed by the lack of freely available datasets of anatomical models and geometries. Moreover, female-specific geometries have been neglected with a widespread emphasis on male geometry. To help realize this goal, we have developed and shared complete three-dimensional musculoskeletal geometries extracted from the National Libraries of Medicine Visible Human Female and Male cryosections. Muscle, bone, cartilage, ligament, and fat from the pelvis to the ankle were digitized and exported. These geometries provide a foundation for continued work in human musculoskeletal simulation with high-fidelity deformable tissues that enable a better understanding of normal function and the evaluation of pathologies and treatments. This work is novel as it includes both the male and female Visible Human specimens, outputs at multiple levels of post-processing for maximum data reuse, and is publicly available.


Subject(s)
Lower Extremity , Female , Humans , Male , Bone and Bones , Computer Simulation , Lower Extremity/anatomy & histology , Lower Extremity/physiology
5.
J Biomech ; 138: 111118, 2022 06.
Article in English | MEDLINE | ID: mdl-35576630

ABSTRACT

The standing lunge is an activity commonly used to quantify in-vivo knee kinematics with fluoroscopy. The ability to perform the standing lunge varies between subjects and can necessitate movement accommodations to successfully complete the desired range of motion. We proposed a supine leg press as an alternative to the standing lunge that aimed to provide a similar evaluation of knee motion while increasing the measured range of motion. Tibiofemoral kinematics of 53 non-symptomatic adults (27 men, 26 women, 50.8 ± 7.0 yrs.) were calculated from the tracked high-speed stereo radiography (HSSR) images for supine leg press and standing lunge using CT-segmented bony geometries of the right lower limb. The supine leg press proved to be a useful alternative to the standing lunge while providing 46.2° greater range of motion in knee flexion. The difference in angle-matched kinematics across a 100° flexion range between the leg press and lunge was 0.70° in varus-valgus rotation, 1.5° in internal-external rotation, 1.0 mm in medial-lateral translation, 2.3 mm in anterior-posterior translation, and 0.46 mm in superior-inferior translation for men. The angle-matched difference for women across 100° was 0.58° in varus-valgus rotation, 2.4° internal-external rotation, 0.70 mm medial-lateral translation, 2.1 mm anterior-posterior translation, and 0.78 mm superior-inferior translation. The similar kinematics, while having a greater range of motion, and control of the applied load makes the supine leg press an alternative for quantifying in-vivo knee kinematics.


Subject(s)
Knee Joint , Leg , Adult , Biomechanical Phenomena , Female , Humans , Knee Joint/diagnostic imaging , Male , Radiography , Range of Motion, Articular
6.
J Mech Behav Biomed Mater ; 125: 104960, 2022 01.
Article in English | MEDLINE | ID: mdl-34794043

ABSTRACT

Secondary femoral fractures after the successful plate-screw fixation of a primary Vancouver type B1 periprosthetic femoral fracture (PFF) have been associated with the altered state of stress/strain in the femur as the result of plating. The laterally implanted condyle-spanning plate-screw constructs have shown promises clinically in avoiding secondary bone and implant failures as compared with shorter diaphyseal plates. Though the condyle-spanning plating has been hypothesized to avoid stress concentration in the femoral diaphysis through increasing the working length of the plate, biomechanical evidence is lacking on how plate length may impact the stress/strain state of the implanted femur. Through developing and experimentally validating finite element (FE) models of 3 cadaveric femurs, this study investigated the impact of plating on bone strains, load transfer and local stiffness, which were compared between FE models of 2 different plating systems that each had a diaphyseal configuration and a condyle-spanning configuration. Under simulated gait-loading, the condyle-spanning constructs of both plating systems were shown to lower the bone strains around the distal fixation screws (up to 24.8% reduction in maximum principal strain and 26.6% reduction in minimum principal strain) and in the distal metaphyseal shaft of the femur (up to 15.9% and 25.7% reductions in maximum and minimum principal strains, respectively), where secondary bone fractures have been typically reported. In the distal diaphyseal and metaphyseal shaft of femur, FE models of the condyle-spanning constructs were shown to increase the local compressive stiffness (up to 152.9% increases under simulated gait-loading) and decrease the transfer of compressive load (37.1% decreases under simulated gait-loading), which may be indicative of the lowered risks of bone damage.


Subject(s)
Femoral Fractures , Femur , Bone Plates , Femoral Fractures/surgery , Femur/surgery , Fracture Fixation, Internal , Humans , Lower Extremity
7.
J Med Device ; 15(4): 041004, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34721751

ABSTRACT

Computational modeling is of growing importance in orthopedics and biomechanics as a tool to understand differences in pathology and predict outcomes from surgical interventions. However, the computational models of the knee have historically relied on in vitro data to create and calibrate model material properties due to the unavailability of accurate in vivo data. This work demonstrates the design and use of a custom device to quantify anterior-posterior (AP) and internal-external (IE) in vivo knee laxity, with an accuracy similar to existing in vitro methods. The device uses high-speed stereo radiography (HSSR) tracking techniques to accurately measure the resulting displacements of the femur, tibia, and patella bones during knee laxity assessment at multiple loads and knee flexion angles. The accuracy of the knee laxity apparatus was determined by comparing laxity data from two cadaveric specimens between the knee laxity apparatus and an existing in vitro robotic knee joint simulator. The accuracy of the knee laxity apparatus was within 1 mm (0.04 in.) for AP and 2.5 deg for IE. Additionally, two living subjects completed knee laxity testing to confirm the laboratory use of the novel apparatus. This work demonstrates the ability to use custom devices in HSSR to collect accurate data, in vivo, for calibration of computational models.

SELECTION OF CITATIONS
SEARCH DETAIL
...