Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6774, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891180

ABSTRACT

Most eukaryotic proteins are N-terminally acetylated, but the functional impact on a global scale has remained obscure. Using genome-wide CRISPR knockout screens in human cells, we reveal a strong genetic dependency between a major N-terminal acetyltransferase and specific ubiquitin ligases. Biochemical analyses uncover that both the ubiquitin ligase complex UBR4-KCMF1 and the acetyltransferase NatC recognize proteins bearing an unacetylated N-terminal methionine followed by a hydrophobic residue. NatC KO-induced protein degradation and phenotypes are reversed by UBR knockdown, demonstrating the central cellular role of this interplay. We reveal that loss of Drosophila NatC is associated with male sterility, reduced longevity, and age-dependent loss of motility due to developmental muscle defects. Remarkably, muscle-specific overexpression of UbcE2M, one of the proteins targeted for NatC KO-mediated degradation, suppresses defects of NatC deletion. In conclusion, NatC-mediated N-terminal acetylation acts as a protective mechanism against protein degradation, which is relevant for increased longevity and motility.


Subject(s)
Longevity , Protein Processing, Post-Translational , Male , Humans , Amino Acid Sequence , Acetylation , Longevity/genetics , Ubiquitins/metabolism , Ubiquitin-Protein Ligases/metabolism
2.
BMC Med Genomics ; 15(1): 215, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36224552

ABSTRACT

BACKGROUND: RNA is a critical analyte for unambiguous detection of actionable mutations used to guide treatment decisions in oncology. Currently available methods for gene fusion detection include molecular or antibody-based assays, which suffer from either being limited to single-gene targeting, lack of sensitivity, or long turnaround time. The sensitivity and predictive value of next generation sequencing DNA-based assays to detect fusions by sequencing intronic regions is variable, due to the extensive size of introns. The required depth of sequencing and input nucleic acid required can be prohibitive; in addition it is not certain that predicted gene fusions are actually expressed. RESULTS: Herein we describe a method based on pyrophosphorolysis to include detection of gene fusions from RNA, with identical assay steps and conditions to detect somatic mutations in DNA [1], permitting concurrent assessment of DNA and RNA in a single instrument run. CONCLUSION: The limit of detection was under 6 molecules/ 6 µL target volume. The workflow and instrumentation required are akin to PCR assays, and the entire assay from extracted nucleic acid to sample analysis can be completed within a single day.


Subject(s)
Gene Fusion , RNA , High-Throughput Nucleotide Sequencing/methods , Mutation , RNA/genetics , Sequence Analysis, RNA
3.
Life Sci Alliance ; 5(11)2022 11.
Article in English | MEDLINE | ID: mdl-35831024

ABSTRACT

Mitochondria-ER contact sites (MERCs) orchestrate many important cellular functions including regulating mitochondrial quality control through mitophagy and mediating mitochondrial calcium uptake. Here, we identify and functionally characterize the Drosophila ortholog of the recently identified mammalian MERC protein, Pdzd8. We find that reducing pdzd8-mediated MERCs in neurons slows age-associated decline in locomotor activity and increases lifespan in Drosophila. The protective effects of pdzd8 knockdown in neurons correlate with an increase in mitophagy, suggesting that increased mitochondrial turnover may support healthy aging of neurons. In contrast, increasing MERCs by expressing a constitutive, synthetic ER-mitochondria tether disrupts mitochondrial transport and synapse formation, accelerates age-related decline in locomotion, and reduces lifespan. Although depletion of pdzd8 prolongs the survival of flies fed with mitochondrial toxins, it is also sufficient to rescue locomotor defects of a fly model of Alzheimer's disease expressing Amyloid ß42 (Aß42). Together, our results provide the first in vivo evidence that MERCs mediated by the tethering protein pdzd8 play a critical role in the regulation of mitochondrial quality control and neuronal homeostasis.


Subject(s)
Amyloid beta-Peptides , Drosophila Proteins , Drosophila melanogaster , Endoplasmic Reticulum , Mitochondria , Peptide Fragments , Alzheimer Disease , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/toxicity , Animals , Cellular Senescence , Disease Models, Animal , Drosophila Proteins/deficiency , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/drug effects , Drosophila melanogaster/metabolism , Drosophila melanogaster/physiology , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Gene Knockdown Techniques , Genetic Fitness , Locomotion/drug effects , Longevity/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Dynamics/drug effects , Mitophagy/drug effects , Neurons/drug effects , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/toxicity
4.
Sci Rep ; 10(1): 2693, 2020 02 14.
Article in English | MEDLINE | ID: mdl-32060339

ABSTRACT

Mutations in PINK1 and Parkin/PRKN cause the degeneration of dopaminergic neurons in familial forms of Parkinson's disease but the precise pathogenic mechanisms are unknown. The PINK1/Parkin pathway has been described to play a central role in mitochondrial homeostasis by signalling the targeted destruction of damaged mitochondria, however, how disrupting this process leads to neuronal death was unclear until recently. An elegant study in mice revealed that the loss of Pink1 or Prkn coupled with an additional mitochondrial stress resulted in the aberrant activation of the innate immune signalling, mediated via the cGAS/STING pathway, causing degeneration of dopaminergic neurons and motor impairment. Genetic knockout of Sting was sufficient to completely prevent neurodegeneration and accompanying motor deficits. To determine whether Sting plays a conserved role in Pink1/parkin related pathology, we tested for genetic interactions between Sting and Pink1/parkin in Drosophila. Surprisingly, we found that loss of Sting, or its downstream effector Relish, was insufficient to suppress the behavioural deficits or mitochondria disruption in the Pink1/parkin mutants. Thus, we conclude that phenotypes associated with loss of Pink1/parkin are not universally due to aberrant activation of the STING pathway.


Subject(s)
Drosophila Proteins/genetics , Membrane Proteins/genetics , Parkinson Disease/genetics , Protein Serine-Threonine Kinases/genetics , Ubiquitin-Protein Ligases/genetics , Animals , Behavior, Animal/physiology , DNA, Mitochondrial/genetics , Disease Models, Animal , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Drosophila melanogaster/genetics , Humans , Mice , Mitochondria/genetics , Parkinson Disease/pathology , Phenotype , Signal Transduction/genetics
5.
Nat Commun ; 10(1): 3280, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31337756

ABSTRACT

Somatic mutations in the mitochondrial genome (mtDNA) have been linked to multiple disease conditions and to ageing itself. In Drosophila, knock-in of a proofreading deficient mtDNA polymerase (POLG) generates high levels of somatic point mutations and also small indels, but surprisingly limited impact on organismal longevity or fitness. Here we describe a new mtDNA mutator model based on a mitochondrially-targeted cytidine deaminase, APOBEC1. mito-APOBEC1 acts as a potent mutagen which exclusively induces C:G>T:A transitions with no indels or mtDNA depletion. In these flies, the presence of multiple non-synonymous substitutions, even at modest heteroplasmy, disrupts mitochondrial function and dramatically impacts organismal fitness. A detailed analysis of the mutation profile in the POLG and mito-APOBEC1 models reveals that mutation type (quality) rather than quantity is a critical factor in impacting organismal fitness. The specificity for transition mutations and the severe phenotypes make mito-APOBEC1 an excellent mtDNA mutator model for ageing research.


Subject(s)
APOBEC-1 Deaminase/physiology , DNA, Mitochondrial/chemistry , Drosophila/genetics , APOBEC-1 Deaminase/genetics , APOBEC-1 Deaminase/metabolism , Animals , Drosophila/physiology , Mitochondria/metabolism , Mitochondria/physiology , Models, Genetic , Mutation , Organisms, Genetically Modified
6.
Cell Rep ; 11(8): 1266-79, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25981041

ABSTRACT

In the Drosophila circadian oscillator, the CLOCK/CYCLE complex activates transcription of period (per) and timeless (tim) in the evening. PER and TIM proteins then repress CLOCK (CLK) activity during the night. The pace of the oscillator depends upon post-translational regulation that affects both positive and negative components of the transcriptional loop. CLK protein is highly phosphorylated and inactive in the morning, whereas hypophosphorylated active forms are present in the evening. How this critical dephosphorylation step is mediated is unclear. We show here that two components of the STRIPAK complex, the CKA regulatory subunit of the PP2A phosphatase and its interacting protein STRIP, promote CLK dephosphorylation during the daytime. In contrast, the WDB regulatory PP2A subunit stabilizes CLK without affecting its phosphorylation state. Inhibition of the PP2A catalytic subunit and CKA downregulation affect daytime CLK similarly, suggesting that STRIPAK complexes are the main PP2A players in producing transcriptionally active hypophosphorylated CLK.


Subject(s)
CLOCK Proteins/metabolism , Circadian Rhythm/physiology , Drosophila/metabolism , Period Circadian Proteins/metabolism , Animals , Female , Male , Phosphorylation
7.
J Insect Physiol ; 58(10): 1376-81, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22885376

ABSTRACT

Drosophila larval coagulation factors have been identified in vitro. Better understanding of insect hemolymph coagulation calls for experiments in vivo. We have characterized a fondue (fon) mutation and null alleles isolated by imprecise excision of a transposable element. Loss of fon was pupal lethal, but adults could be recovered by expressing the UAS::fonGFP construct of Lindgren et al. (2008). Despite their lethality, fon mutations did not affect larval survival after wounding either when tested alone or in combination with a mutation in the hemolectin clotting factor gene. This reinforces the idea of redundant hemostatic mechanisms in Drosophila larvae, and independent pleiotropic functions of the fondue protein in coagulation and a vital process in metamorphosis.


Subject(s)
Blood Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Hemolymph/physiology , Hemostasis , Animals , Drosophila melanogaster/genetics , Female , Larva/physiology , Male , Mutation
8.
PLoS One ; 6(3): e18142, 2011 Mar 29.
Article in English | MEDLINE | ID: mdl-21479274

ABSTRACT

Mutations of human leucine-rich glioma inactivated (LGI1) gene encoding the epitempin protein cause autosomal dominant temporal lateral epilepsy (ADTLE), a rare familial partial epileptic syndrome. The LGI1 gene seems to have a role on the transmission of neuronal messages but the exact molecular mechanism remains unclear. In contrast to other genes involved in epileptic disorders, epitempin shows no homology with known ion channel genes but contains two domains, composed of repeated structural units, known to mediate protein-protein interactions.A three dimensional in silico model of the two epitempin domains was built to predict the structure-function relationship and propose a functional model integrating previous experimental findings. Conserved and electrostatic charged regions of the model surface suggest a possible arrangement between the two domains and identifies a possible ADAM protein binding site in the ß-propeller domain and another protein binding site in the leucine-rich repeat domain. The functional model indicates that epitempin could mediate the interaction between proteins localized to different synaptic sides in a static way, by forming a dimer, or in a dynamic way, by binding proteins at different times.The model was also used to predict effects of known disease-causing missense mutations. Most of the variants are predicted to alter protein folding while several other map to functional surface regions. In agreement with experimental evidence, this suggests that non-secreted LGI1 mutants could be retained within the cell by quality control mechanisms or by altering interactions required for the secretion process.


Subject(s)
ADAM Proteins/metabolism , Computational Biology/methods , Models, Molecular , Proteins/chemistry , Amino Acid Sequence , Binding Sites , Evolution, Molecular , Glycosylation , Humans , Intracellular Signaling Peptides and Proteins , Leucine-Rich Repeat Proteins , Ligands , Molecular Sequence Data , Mutation, Missense/genetics , Phylogeny , Protein Binding , Protein Structure, Tertiary , Proteins/genetics , Proteins/metabolism , Sequence Alignment , Structural Homology, Protein
9.
Hum Mutat ; 30(4): 530-6, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19191227

ABSTRACT

Autosomal dominant lateral temporal epilepsy (ADLTE) or autosomal dominant partial epilepsy with auditory features (ADPEAF) is an inherited epileptic syndrome with onset in childhood/adolescence and benign evolution. The hallmark of the syndrome consists of typical auditory auras or ictal aphasia in most affected family members. ADTLE/ADPEAF is associated in about half of the families with mutations of the leucine-rich, glioma-inactivated 1 (LGI1) gene. In addition, de novo LGI1 mutations are found in about 2% of sporadic cases with idiopathic partial epilepsy with auditory features, who are clinically similar to the majority of patients with ADLTE/ADPEAF but have no family history. Twenty-five LGI1 mutations have been described in familial and sporadic lateral temporal epilepsy patients. The mutations are distributed throughout the gene and are mostly missense mutations occurring in both the N-terminal leucine rich repeat (LRR) and C-terminal EPTP (beta propeller) protein domains. We show a tridimensional model of the LRR protein region that allows missense mutations of this region to be divided into two distinct groups: structural and functional mutations. Frameshift, nonsense and splice site point mutations have also been reported that result in protein truncation or internal deletion. The various types of mutations are associated with a rather homogeneous phenotype, and no obvious genotype-phenotype correlation can be identified. Both truncating and missense mutations appear to prevent secretion of mutant proteins, suggesting a loss of function effect of mutations. The function of LGI1 is unclear. Several molecular mechanisms possibly leading to lateral temporal epilepsy are illustrated and briefly discussed.


Subject(s)
Epilepsy, Temporal Lobe/genetics , Mutation , Proteins/genetics , Amino Acid Sequence , Epilepsy, Temporal Lobe/pathology , Epilepsy, Temporal Lobe/physiopathology , Genes, Dominant , Humans , Intracellular Signaling Peptides and Proteins , Molecular Sequence Data , Polymorphism, Genetic , Protein Structure, Tertiary , Proteins/chemistry , Proteins/physiology , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...