Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(16)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38661198

ABSTRACT

A combination of experimental and numerical investigations on metallic silver and platinum nanoparticles deposited on silica substrates is presented, with a focus on metal-substrate interactions. Experimentally, the nanoparticles, obtained by ultra-high vacuum atom deposition, are characterized by grazing-incidence small-angle x-ray scattering and high resolution transmission electronic microscopy to determine their structure and morphology and, in particular, their aspect ratio (height/diameter), which quantifies the metal-substrate interaction, from the as-grown to equilibrium state. Numerically, the interactions between the metal and the silica species are modeled with the Lennard-Jones (12, 6) potential, with two parameters for each metal and silica species. The geometric parameters were found in the literature, while the energetic parameters were determined from our experimental measurements of the aspect ratio. The parameters are as follows: σAg-O = 0.278 nm, σAg-Si = 0.329 nm, ɛAg-O = 75 meV, and ɛAg-Si = 13 meV for Ag-silica and σPt-O = 0.273 nm, σPt-Si = 0.324 nm, ɛPt-O = 110 meV, and ɛPt-Si = 18 meV for Pt-silica. The proposed Ag-silica potential reproduces quantitatively the unexpected experimental observation of the variation of the aspect ratio for Ag nanoparticles larger than 5 nm, which has been interpreted as a consequence of the silica roughness. The nanoparticle orientation, structure, and disorder are also considered. This metal-silica potential for Ag and Pt should be helpful for further studies on pure metals as well as their alloys.

2.
Nanoscale ; 13(12): 6096-6104, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33683240

ABSTRACT

Atomic motions and morphological evolution of growing Co-Ag nanoparticles are followed in situ and in real time, by wide and small angle X-ray scattering obtained simultaneously in grazing incidence geometry (GISAXS and GIWAXS), in single or multi-wavelength anomalous modes. The structural analysis of the experimental data is performed with the aid of equilibrium Monte Carlo simulations and of molecular-dynamics simulations of nanoparticle growth. Growth is performed by depositing Co atoms above preformed Ag nanoparticles. This growth procedure is strongly out of equilibrium, because Ag tends to surface segregation, and generates complex growth sequences. The real time analysis of the growth allows to follow the nanoparticle evolution pathways almost atom-by-atom, determining the key mechanisms during Co deposition: starting with the incorporation of Co atoms in sub-surface positions, to the off-center Co domain formation, then by which the nanoparticles finally approach their equilibrium quasi-Janus then core-shell structures.

3.
Nat Commun ; 10(1): 1982, 2019 04 30.
Article in English | MEDLINE | ID: mdl-31040272

ABSTRACT

The size increase of a nanoscale material is commonly associated with the increased stability of its ordered phases. Here we give a counterexample to this trend by considering the formation of the defect-free L11 ordered phase in AgPt nanoparticles, and showing that it is better stabilized in small nanoparticles (up to 2.5 nm) than in larger ones, in which the ordered phase breaks in multiple domains or is interrupted by faults. The driving force for the L11 phase formation in small nanoparticles is the segregation of a monolayer silver shell (an Ag-skin) which prevents the element with higher surface energy (Pt) from occupying surface sites. With increasing particle size, the Ag-skin causes internal stress in the L11 domains which cannot thus exceed the critical size of ~2.5 nm. A multiscale modelling approach using full-DFT global optimization calculations and atomistic modelling is used to interpret the findings.

4.
Nanotechnology ; 20(42): 425304, 2009 Oct 21.
Article in English | MEDLINE | ID: mdl-19779236

ABSTRACT

Ultra-small CoPt nanoparticles (NPs) with a mean diameter of 1.3 nm (around 100 atoms) were deposited on a thin 5 nm self-supported amorphous carbon membrane. The effects of focused irradiation with a newly developed Ga(+) ion source were studied by transmission electron microscopy. While the overall coverage of the NPs remained constant, the mean diameter and the density of the NPs evolve in the dose range from 5 x 10(13) to 1 x 10(15) ions cm(-2). The local tuning of the size and density of CoPt NPs by means of ion irradiation could be used in magnetic data storage applications.

5.
Phys Rev Lett ; 100(11): 115502, 2008 Mar 21.
Article in English | MEDLINE | ID: mdl-18517793

ABSTRACT

The structure and morphology of 1 to 3 nm size CoPt nanoparticles have been investigated in situ and in real time under different conditions: growth at 500 degrees C or at room temperature (RT) followed by annealing at 500 degrees C. The small-angle x-ray scattering measurements show size and temperature dependent growth mode with particle motions on the surface, while wide-angle scattering results, supported by Monte Carlo simulations, allow structure identification. If icosahedra are systematically detected at the first growth stages at RT, annealing at 500 degrees C yields the decahedral structure from the quasistatic coalescence of icosahedral morphology. Meanwhile, growth at 500 degrees C proceeds by a dynamical coalescence mechanism at the early stage, yielding truncated octahedral cubic structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...