Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Biomedicines ; 11(2)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36831136

ABSTRACT

Pericytes are perivascular multipotent cells wrapping microvascular capillaries, where they support vasculature functioning, participate in tissue regeneration, and regulate blood flow. However, recent evidence suggests that in addition to traditionally credited structural function, pericytes also manifest immune properties. In this review, we summarise recent data regarding pericytes' response to different pro-inflammatory stimuli and their involvement in innate immune responses through expression of pattern-recognition receptors. Moreover, pericytes express various adhesion molecules, thus regulating trafficking of immune cells across vessel walls. Additionally, the role of pericytes in modulation of adaptive immunity is discussed. Finally, recent reports have suggested that the interaction with cancer cells evokes immunosuppression function in pericytes, thus facilitating immune evasion and facilitating cancer proliferation and metastasis. However, such complex and multi-faceted cross-talks of pericytes with immune cells also suggest a number of potential pericyte-based therapeutic methods and techniques for cancer immunotherapy and treatment of autoimmune and auto-inflammatory disorders.

2.
Biomed Pharmacother ; 156: 113928, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36411618

ABSTRACT

Pericytes are mural vascular cells covering microvascular capillaries, where they contribute to the formation, maturation, maintenance, stabilisation and remodelling of vasculature. They actively interact and communicate with other cells to maintain the capillary structural integrity, vascular permeability and blood flow. Pericytes are crucial participants in the physiological and pathological processes of cardiovascular disease. In this review, we summarise recent data regarding pericyte metabolism, trans-differentiation, angiogenesis and immunomodulation in connection with different cardiovascular pathologies. Further, we discuss an application of pericytes as a new cell therapy approach to treat coronary artery disease, congenital heart disease, atherosclerotic plaques calcification and calcific valvular heart disease in different in vivo animal models and in vitro studies. Also, we discuss different methods and pharmacological therapies for CVDs treatment with pericyte-mediated effects. Finally, we present a comprehensive overview of the role of pericytes in CVDs and as a pharmacological target for different novel drugs and techniques and highlight the potential application of pericytes to treat CVDs.


Subject(s)
Cardiovascular Diseases , Pericytes , Animals , Pericytes/metabolism , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Capillaries , Neovascularization, Pathologic/metabolism , Cell Differentiation
3.
Int J Mol Sci ; 23(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36232962

ABSTRACT

Pericytes are multipotent mesenchymal stromal cells playing an active role in angiogenesis, vessel stabilisation, maturation, remodelling, blood flow regulation and are able to trans-differentiate into other cells of the mesenchymal lineage. In this review, we summarised recent data demonstrating that pericytes play a key role in the pathogenesis and development of atherosclerosis (AS). Pericytes are involved in lipid accumulation, inflammation, growth, and vascularization of the atherosclerotic plaque. Decreased pericyte coverage, endothelial and pericyte dysfunction is associated with intraplaque angiogenesis and haemorrhage, calcification and cholesterol clefts deposition. At the same time, pericytes can be used as a novel therapeutic target to promote vessel maturity and stability, thus reducing plaque vulnerability. Finally, we discuss recent studies exploring effective AS treatments with pericyte-mediated anti-atherosclerotic, anti-inflammatory and anti-apoptotic effects.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Atherosclerosis/pathology , Atherosclerosis/therapy , Cholesterol , Humans , Lipids , Neovascularization, Pathologic/pathology , Pericytes/pathology , Plaque, Atherosclerotic/pathology
4.
Stem Cells Dev ; 30(24): 1228-1240, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34714129

ABSTRACT

Bone and muscle tissues are mostly susceptible to different kinds of hypodynamia, including real and simulated microgravity (sµg). To evaluate the effect of sµg on bone marrow (BM), male C57Bl/6N mice were divided into three groups: vivarium control (VC), 30-day hindlimb suspension (HS), and subsequent 12-h short-term support reloading (RL). The effects on BM total mononucleated cells (MNCs) as well as stromal and hematopoietic progenitors from murine tibia were studied. The number of BM MNCs, immunophenotype, proliferation, colony-forming units (CFUs), differentiation and secretory activity of hematopoietic and stromal BM cells were determined. HS led to a twofold decrease in MNCs, alteration of surface molecule expression profiles, suppression of proliferative activity of BM cells, and change of soluble mediators' levels. The stromal compartment was characterized by a decrease of CFU of fibroblasts and suppression of spontaneous osteo-commitment after HS. Among the hematopoietic precursors, a decrease in the total number of CFUs was found mainly at the expense of suppression of CFU-GM and CFU-GEMM. After RL, restoration of the stromal precursor's functional activity to control levels and overabundance of paracrine mediator's production were detected, whereas the complete recovery of hematopoietic precursor's activity did not occur. These data demonstrate the fast functional reaction of the stromal compartment on restoration of loading support.


Subject(s)
Bone Marrow , Tibia , Animals , Bone Marrow Cells , Cell Differentiation/physiology , Colony-Forming Units Assay , Male , Mice , Stromal Cells
5.
J Photochem Photobiol B ; 199: 111596, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31450129

ABSTRACT

Photodynamic therapy (PDT) is a non-invasive FDA and EMA-approved anticancer treatment modality. Initially developed for elimination of malignant cells, PDT affects all cells in the tumor bed including stromal cells. Stroma represents not only an important component of tumor microenvironment, but has a significant impact on tumor susceptibility to PDT and other anticancer therapies. However, the effects of PDT on stromal cells are poorly investigated. During PDT the tumor stroma can receive low-dose irradiation as a result of chosen regimen or limited depth of light penetration. Here, we characterized response of human mesenchymal stromal cells (MSCs) to low-dose PDT. In an in vitro model we demonstrated that low-dose PDT resulted in activation of Erk1/2 and inhibition of GSK-3 signaling in MSCs. PDT-mediated induction of intracellular reactive oxygen species (ROS) resulted in reorganization of MSC cytoskeleton and decreased cell motility. More importantly, low-dose PDT dramatically upregulated secretion of various proangiogenic factors (VEGF-A, IL-8, PAI-1, MMP-9, etc.) by MSCs and improved MSC ability to promote angiogenesis suggesting an increase in the pro-tumorigenic potential of MSCs. In contrast, co-cultivation of PDT-treated MSCs with lymphocytes resulted in significant decrease of MSC viability and potential increase in MSC immunogenicity, which may lead to increased anti-tumor immunity. Low-dose PDT in MSCs significantly inhibited secretion of CCL2 (MCP-1) potentially limiting infiltration of pro-tumorigenic macrophages. Altogether, our findings demonstrate that low-dose PDT significantly modifies functional properties of MSCs improving their pro-tumorigenic potential while simultaneously increasing potential immune stimulation suggesting possible mechanisms of stromal cell contribution to PDT efficacy.


Subject(s)
Mesenchymal Stem Cells/drug effects , Photochemotherapy/methods , Tumor Microenvironment/drug effects , Adipose Tissue/metabolism , Animals , Cell Movement , Cell Survival/radiation effects , Chemokine CCL2/metabolism , Coculture Techniques , Glycogen Synthase Kinase 3/antagonists & inhibitors , Humans , Leukocytes, Mononuclear/radiation effects , Light , Low-Level Light Therapy , Mitogen-Activated Protein Kinase 1/metabolism , Photosensitizing Agents/pharmacology , Quail/embryology , Reactive Oxygen Species/metabolism , Signal Transduction , Wound Healing/radiation effects
6.
J Cell Biochem ; 119(3): 2875-2885, 2018 03.
Article in English | MEDLINE | ID: mdl-29080356

ABSTRACT

Microgravity is a principal risk factor hampering human cardiovascular regulation during space flights. Endothelial dysfunction associated with the impaired integrity and uniformity of the monolayer represents a potential trigger for vascular damage. We characterized the expression profile of the multi-step cascade of adhesion molecules (ICAM-1, VCAM-1, E-selectin, VE-cadherin) in umbilical cord endothelial cells (ECs) after 24 h of exposure to simulated microgravity (SMG), pro-inflammatory cytokine TNF-α, and the combination of the two. Random Positioning Machine (RPM)-mediated SMG was used to mimic microgravity effects. SMG stimulated the expression of E-selectin, which is known to be involved in slowing leukocyte rolling. Primary ECs displayed heterogeneity with respect to the proportion of ICAM-1-positive cells. ECs were divided into two groups: pre-activated ECs displaying high proportion of ICAM-1+ -cells (ECs-1) (greater than 50%) and non-activated ECs with low proportion of ICAM-1+ -cells (ECs-2) (less than 25%). Only non-activated ECs-2 responded to SMG by elevating gene transcription and increasing ICAM-1 and VE-cadherin expression. This effect was enhanced after cumulative SMG-TNF-α exposure. ECs-1 displayed an unexpected decrease in number of E-selectin- and ICAM-1-positive ECs and pronounced up-regulation of VCAM1 upon activation of inflammation, which was partially abolished by SMG. Thus, non-activated ECs-2 are quite resistant to the impacts of microgravity and even exhibited an elevation of the VE-cadherin gene and protein expression, thus improving the integrity of the endothelial monolayer. Pre-activation of ECs with inflammatory stimuli may disturb the EC adhesion profile, attenuating its barrier function. These alterations may be among the mechanisms underlying cardiovascular dysregulation in real microgravity conditions.


Subject(s)
Gene Expression Regulation , Human Umbilical Vein Endothelial Cells/metabolism , Intercellular Adhesion Molecule-1/biosynthesis , Weightlessness Simulation , Weightlessness , Human Umbilical Vein Endothelial Cells/cytology , Humans
7.
J Cell Physiol ; 233(2): 1535-1547, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28600879

ABSTRACT

Multipotent mesenchymal stromal cells (MSCs) are considered cue regulators of tissue remodeling. Their activity is strongly governed by local milieu, where O2 level is most important. The elevation of inflammatory mediators and acute O2 lowering may additionally modulate MSC activity. In present paper the priming effects of IFN-gamma on adipose tissue-derived MSCs (ASCs) at tissue-related O2 level (5%) and acute hypoxic stress (0.1% O2 ) were assessed as alterations of ASCs' CFU-F, proliferation, migration, osteo-commitment. IFN-gamma priming provoked ROS elevation, cell growth slowdown, attenuation of both spontaneous and induced osteodifferentiation of tissue O2 -adapted ASCs. The prominent changes in ASC cytoskeleton-related gene transcription was detected. IFN-gamma exposure shifted the ASC paracrine profile, suppressing the production of VEGF and IL-8, while MCP-1 and IL-6 were stimulated. Conditioned medium of IFN-gamma-primed ASCs did not activate vessel growth in the CAM assay, but induced endothelial cell migration in "wound closure." Short-term hypoxia suppressed CFU-F number, IFN-gamma-induced elevation of IL-6 and endothelial cell migration, while it abolished IFN-gamma-provoked VEGF inhibition. After N-acetyl cysteine treatment ROS level was partly abolished providing additional enhancement of IL-6 and suppression of IL-8 and VEGF production. These findings demonstrated that paracrine activity of ASCs in part may be governed by ROS level. Thus, this study first demonstrated that IFN-gamma priming itself and in combination with acute O2 deprivation could supply dual effects on ASC functions providing both stimulatory and hampering effects. The equilibrium of these factors is a substantial requirement for the execution of MSC remodeling functions.


Subject(s)
Adipose Tissue/drug effects , Interferon-gamma/pharmacology , Mesenchymal Stem Cells/drug effects , Adipose Tissue/cytology , Adipose Tissue/metabolism , Animals , Cell Hypoxia , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Coculture Techniques , Coturnix , Culture Media, Conditioned/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Neovascularization, Physiologic , Osteogenesis/drug effects , Oxidative Stress/drug effects , Paracrine Communication/drug effects , Phenotype , Reactive Oxygen Species/metabolism , Time Factors
8.
Cytotechnology ; 70(1): 299-312, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28975481

ABSTRACT

Multipotent mesenchymal stem cells (MSCs) are an attractive tool for cell therapy and regenerative medicine. Being applied in vivo, allogeneic MSCs are faced with both activated and unstimulated immune cells. The effects of MSCs on activated immune cells are well described and are mainly suppressive. Less is known about the interaction of MSCs with unstimulated immune cells. We evaluated the contribution of tissue-related O2 level ("physiological" hypoxia-5% O2) and cell-to-cell contact to the interaction between allogeneic adipose tissue-derived MSCs (ASCs) and unstimulated peripheral blood mononuclear cells (PBMCs). Under both O2 levels, ASCs affected the immune response by elevating the proportion of CD69+ T cells and modifying the functional activity of unstimulated PBMCs, providing a significant reduction of ROS level and activation of lysosome compartment. "Physiological" hypoxia partially attenuated the ASC modulation of PBMC function, reducing CD69+ cell activation and more significantly supressing ROS. In direct co-culture, the ASC effects were more pronounced. PBMC viability was preferentially maintained, and the lymphocyte subset ratio was altered in favour of B cells. Our findings demonstrate that allogeneic ASCs do not enhance the activation of unstimulated immune cells and can provide supportive functions. The "hypoxic" phenotype of ASCs may be more "desirable" for the interaction with allogeneic immune cells that may be required in cell therapy protocols.

9.
Mater Sci Eng C Mater Biol Appl ; 75: 1075-1082, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28415392

ABSTRACT

Poly(vinyl alcohol) (PVA) hydrogels are widely employed for various biomedical applications, including tissue engineering, due to their biocompatibility, high water solubility, low protein adsorption, and chemical stability. However, non-charged surface of PVA-based hydrogels is not optimal for cell adhesion and spreading. Here, cross-linked macroporous hydrogels based on low molecular weight acrylated PVA (Acr-PVA) was synthesized by modification of the pendant alcohol groups on the PVA with glycidyl methacrylate (GMA). To enhance cell affinity, charged groups were introduced to the hydrogel composition. For this purpose, Acr-PVA was copolymerized with either negatively charged acrylic acid (AA) or positively charged 2-(diethylamino) ethyl methacrylate (DEAEMA) monomers. A surface charge of the obtained hydrogels was found to be in function of the co-monomer type and content. Confocal microscopy observations confirmed that adhesion and spreading of both mouse fibroblasts (L929) and human mesenchymal stem cells (hMSC) on the modified Acr-PVA-AA and Acr-PVA-DEAEMA hydrogels were better than those on the non-modified Acr-PVA hydrogel. The increase of DEAEMA monomer content from 5 to 15mol% resulted in the enhancement of cell viability which was 1.5-fold higher for Acr-PVA-DEAEMA-15 hydrogel than that of the non-modified Acr-PVA hydrogel sample.


Subject(s)
Fibroblasts/metabolism , Hydrogels/chemistry , Mesenchymal Stem Cells/metabolism , Polyvinyl Alcohol/chemistry , Tissue Engineering , Animals , Cell Adhesion , Cell Line , Epoxy Compounds/chemistry , Fibroblasts/cytology , Humans , Mesenchymal Stem Cells/cytology , Methacrylates/chemistry , Mice , Porosity
10.
Stem Cells Int ; 2016: 4726267, 2016.
Article in English | MEDLINE | ID: mdl-26880965

ABSTRACT

Human adipose tissue-stromal derived cells (ASCs) are considered a perspective tool for regenerative medicine. Depending on the application mode ASC/allogeneic immune cell interaction can occur in the systemic circulation under plenty high concentrations of O2 and in target tissues at lower O2 levels. Here we examined the effects of allogeneic PHA-stimulated peripheral blood mononuclear cells (PBMCs) on ASCs under ambient (20%) oxygen and "physiological" hypoxia (5% O2). As revealed with microarray analysis ASCs under 20% O2 were more affected by activated PBMCs, which was manifested in differential expression of more than 300 genes, whereas under 5% O2 only 140 genes were changed. Altered gene pattern was only partly overlapped at different O2 conditions. Under O2 ASCs retained their proliferative and differentiative capacities, mesenchymal phenotype, and intracellular organelle' state. ASCs were proinflammatory activated on transcription level that was confirmed by their ability to suppress activation and proliferation of mitogen-stimulated PBMCs. ASC/PBMCs interaction resulted in anti-inflammatory shift of paracrine mediators in conditioning medium with significant increase of immunosuppressive LIF level. Our data indicated that under both ambient and tissue-related O2 ASCs possessed immunosuppressive potential and maintained functional activity. Under "physiological" hypoxia ASCs were less susceptible to "priming" by allogeneic mitogen-activated PBMCs.

11.
Tissue Cell ; 48(1): 25-34, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26747411

ABSTRACT

The present study was undertaken in order to extend of our earlier work, focusing on the analysis of roles of cell-to-cell communications in the regulation of the subendothelial cell function. In present study, we have found that the expression of connexin43 (Cx43) is dramatically reduced in human atherosclerotic lesions, compared with undiseased intima. In atherosclerotic lesions, the number of so-called 'connexin plaques' was found to be lower in lipid-laden cells than in cells which were free from lipid inclusions. In primary cell culture, subendothelial intimal cells tended to create multicellular structures in the form of clusters. Cluster creation was accompanied by the formation of gap junctions between cells; the degree of gap junctional communication correlated with the density of cells in culture. We found that atherosclerosis-related processes such as DNA synthesis, protein synthesis and accumulation of intracellular cholesterol correlated with the degree of cell-to-cell communication. The relation of DNA and protein synthesis with cell-to-cell communication could be described as "bell-shaped". We further incubated cells, cultured from undiseased subendothelial intima, with various forms of modified LDL causing intracellular cholesterol accumulation. After the incubation of intimal cells with modified LDL, intercellular communication has "dropped" considerably. The findings indicate that intracellular lipid accumulation might be a reason for a decrease of the number of gap junctions. The findings also suggest that the disintegration of cellular network is associated with foam cell formation, the process known as a key event of atherogenesis.


Subject(s)
Atherosclerosis/metabolism , Cell Communication/genetics , Cholesterol/metabolism , Endothelium, Vascular/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Cholesterol/genetics , Connexin 43/genetics , Connexin 43/metabolism , DNA/biosynthesis , Endothelium, Vascular/pathology , Gap Junctions/metabolism , Gap Junctions/pathology , Humans , Lipids/genetics , Lipoproteins, LDL/metabolism , Primary Cell Culture , Protein Biosynthesis/genetics
12.
Stem Cells Int ; 2016: 7260562, 2016.
Article in English | MEDLINE | ID: mdl-28115943

ABSTRACT

The ability of mesenchymal stromal (stem) cells (MSCs) to be mobilised from their local depot towards sites of injury and to participate in tissue repair makes these cells promising candidates for cell therapy. Physiological O2 tension in an MSC niche in vivo is about 4-7%. However, most in vitro studies of MSC functional activity are performed at 20% O2. Therefore, this study focused on the effects of short-term hypoxic stress (0.1% O2, 24 h) on adipose tissue-derived MSC motility at tissue-related O2 level. No significant changes in integrin expression were detected after short-term hypoxic stress. However, O2 deprivation provoked vimentin disassembly and actin polymerisation and increased cell stiffness. In addition, hypoxic stress induced the downregulation of ACTR3, DSTN, MACF1, MID1, MYPT1, NCK1, ROCK1, TIAM1, and WASF1 expression, the products of which are known to be involved in leading edge formation and cell translocation. These changes were accompanied by the attenuation of targeted and nontargeted migration of MSCs after short-term hypoxic exposure, as demonstrated in scratch and transwell migration assays. These results indicate that acute hypoxic stress can modulate MSC function in their native milieu, preventing their mobilisation from sites of injury.

13.
Cells Tissues Organs ; 200(5): 307-15, 2015.
Article in English | MEDLINE | ID: mdl-26407140

ABSTRACT

A microenvironment low in O2 ('physiological' hypoxia) governs the functions of perivascular multipotent mesenchymal stromal cells, defining their involvement in tissue physiological homeostasis and regenerative remodelling. Acute hypoxic stress is considered as one of the important factors inducing tissue damage. Here, we evaluate the influence of short-term hypoxia (1% O2 for 24 h) on perivascular adipose tissue-derived cells (ASCs) permanently expanded in tissue-related O2 (5%) microenvironment. After hypoxic exposure, ASCs retained high viability, stromal cell morphology and mesenchymal phenotype (CD73+, CD90+, CD105+ and CD45-). Mild oxidative damage was unveiled as elevation of reactive oxygen species and thiobarbituric acid-active products, while no reduction in the activity of the antioxidant enzymes catalase and glutathione peroxidase and a 20% statistically significant increase in superoxide dismutase activity was detected. Expression of hypoxia-inducible factor (HIF)-1α and HIF-3α isoforms was differently regulated. HIF-1α displayed transient up-regulation, with maximum levels 30 min after acute hypoxic exposure, while HIF-3α was significantly up-regulated after 24 h. Up-regulation of ERK7, MEK1 and c-fos, and down-regulation of MKK6, p53, CCNA2, CCNB1 and CCNB2 were observed after 24 h of oxygen deprivation. Acute hypoxic exposure did not affect the gene expression of other mitogen-activated protein kinases (MAPKs) and MAPK kinases, MAPK/ERK kinase-interacting proteins, MAPK-activated transcription factors and scaffolding proteins. Significant stimulation of vascular endothelial growth factor α and interleukin-6 production was detected in ASC-conditioned medium. Thus, tissue O2-adapted ASCs are resistant to hypoxic stress, which can ensure their effective involvement in the regeneration of tissue damage under significant oxygen deprivation.


Subject(s)
Adipose Tissue/cytology , Cellular Microenvironment/physiology , Hypoxia/metabolism , Mesenchymal Stem Cells/cytology , Oxygen/metabolism , Stromal Cells/cytology , Cell Hypoxia/physiology , Cells, Cultured , Down-Regulation , Humans , Mesenchymal Stem Cells/metabolism , Reactive Oxygen Species/metabolism , Time Factors , Up-Regulation
14.
PLoS One ; 10(4): e0124939, 2014.
Article in English | MEDLINE | ID: mdl-25919031

ABSTRACT

The optimisation of haematopoietic stem and progenitor cell expansion is on demand in modern cell therapy. In this work, haematopoietic stem/progenitor cells (HSPCs) have been selected from unmanipulated cord blood mononuclear cells (cbMNCs) due to adhesion to human adipose-tissue derived stromal cells (ASCs) under standard (20%) and tissue-related (5%) oxygen. ASCs efficiently maintained viability and supported further HSPC expansion at 20% and 5% O2. During co-culture with ASCs, a new floating population of differently committed HSPCs (HSPCs-1) grew. This suspension was enriched with СD34+ cells up to 6 (20% O2) and 8 (5% O2) times. Functional analysis of HSPCs-1 revealed cobble-stone area forming cells (CAFCs) and lineage-restricted colony-forming cells (CFCs). The number of CFCs was 1.6 times higher at tissue-related O2, than in standard cultivation (20% O2). This increase was related to a rise in the number of multipotent precursors - BFU-E, CFU-GEMM and CFU-GM. These changes were at least partly ensured by the increased concentration of MCP-1 and IL-8 at 5% O2. In summary, our data demonstrated that human ASCs enables the selection of functionally active HSPCs from unfractionated cbMNCs, the further expansion of which without exogenous cytokines provides enrichment with CD34+ cells. ASCs efficiently support the viability and proliferation of cord blood haematopoietic progenitors of different commitment at standard and tissue-related O2 levels at the expense of direct and paracrine cell-to-cell interactions.


Subject(s)
Fetal Blood/cytology , Hematopoietic Stem Cells/metabolism , Mesenchymal Stem Cells/metabolism , Oxygen/metabolism , Adipose Tissue/cytology , Cell Adhesion , Cell Hypoxia , Cell Proliferation , Coculture Techniques , Hematopoietic Stem Cells/cytology , Humans , Mesenchymal Stem Cells/cytology
15.
Atherosclerosis ; 219(1): 171-83, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21831373

ABSTRACT

Inflammatory reactions driven by an accumulation in the intima of immune-inflammatory cells and focal lipid depositions are the hallmarks of atherogenesis. It is commonly accepted that immune-inflammatory cell accumulation and lipid deposition are associated with the very earlier stage of atherosclerosis but no study has yet focused on the determination of quantitative values of this association. The present study examined correlations between lipid deposition, immune-inflammatory cell content and major histocompatibility complex (MHC) class II molecule HLA-DR expression in diffuse intimal thickening (DIT), which is thought to represent the earliest macroscopic manifestation of atherosclerosis. In parallel consecutive tissue sections of DIT, lipids were examined by chromatographic analysis (including triglycerides, cholesteryl esters, free cholesterol and phospholipids), histochemically, using Oil Red O staining, and by electron microscopy. Immune-inflammatory cells and HLA-DR expression were examined immunohistochemically in consecutive sections of the same tissue specimens. The study revealed that lipids exhibited a non-uniform distribution throughout the intima. In the juxtaluminal sublayer, lipids were localized both intracellularly and extracellularly, whereas in the juxtamedial musculoelastic sublayer, lipids were present predominantly along elastic fibers. Lipid deposits were found to positively correlate with HLA-DR expression (r=0.79; p<0.001). The study also identified a positive correlation between lipid deposition and immune-inflammatory cell content but the correlation values varied between different sublayers of the tunica intima. The correlation between lipid deposition and immune-inflammatory cell content in the juxtaluminal sublayer of the intima was notably stronger (r=0.69; p<0.001) than in the juxtamedial musculoelastic layer (r=0.28; p<0.001). The findings of the present study support a view that lipid accumulation in the intima plays a role in the initiation of inflammatory reaction and that at the pre-lesional stage in the development of atherosclerosis, lipid-associated immune cell activation might occur primarily in the juxtaluminal portion of the intima.


Subject(s)
Aorta/metabolism , Aorta/pathology , HLA-DR alpha-Chains/biosynthesis , Lipid Metabolism , Tunica Intima/metabolism , Tunica Intima/pathology , Adult , Azo Compounds , Humans , Immunohistochemistry , Male , Middle Aged
16.
J Biomed Mater Res B Appl Biomater ; 97(2): 255-62, 2011 May.
Article in English | MEDLINE | ID: mdl-21384545

ABSTRACT

In the current study, semi-permeable alginate-oligochitosan microcapsules for multicellular tumor spheroids (MTS) generation were elaborated and tested, to estimate a response of the microencapsulated MTS (MMTS) to photodynamic therapy (PDT). The microcapsules (mean diameter 600 µm) with entrapped human breast adenocarcinoma MCF-7 cells were obtained using an electrostatic bead generator, and MMTS were generated by in vitro long-term cell cultivation. The formed MMTS were incubated in Chlorin e6 photosensitizer solution and then irradiated using 650-nm laser light. The cell viability was measured by MTT-assay in 24 h after irradiation, and histological analysis was performed. The proposed MTS-based model was found to be more resistant to the PDT than the two-dimensional monolayer cell culture model. Thus, MMTS could be considered as a promising three-dimesional in vitro model to estimate the doses of drugs or parameters for PDT in vitro before carrying out preclinical tests.


Subject(s)
Breast Neoplasms/drug therapy , Capsules/therapeutic use , Models, Biological , Photochemotherapy/methods , Spheroids, Cellular , Alginates/chemistry , Alginates/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Capsules/chemistry , Cell Culture Techniques , Cell Line, Tumor , Chitosan/chemistry , Chitosan/metabolism , Chlorophyllides , Female , Humans , Materials Testing , Particle Size , Photosensitizing Agents/therapeutic use , Porphyrins/therapeutic use , Static Electricity
17.
Mol Cell Biochem ; 330(1-2): 121-9, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19415461

ABSTRACT

In previous studies, we showed that ganglioside levels (GM3 being the main ganglioside) in human aortic intima isolated from atherosclerotic lesions were 5 times greater compared to intima from non-diseased vascular areas. Recently, we found that GM3 and GM3 synthase levels in differentiated in vitro macrophages were five and ten times higher, respectively, compared to freshly isolated human monocytes. In this article, we report that GM3 synthase mRNA levels were significantly higher in differentiated human monocyte-derived macrophages compared to monocytes and in atherosclerotic aorta compared to normal aorta. The depletion of GM3 synthesis in cultured monocyte-derived macrophages with DL-threo-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol, an inhibitor of ganglioside synthesis, delayed the acquisition of CD206 antigen, prevented the loss of CD163 antigen and enhanced anti-inflammatory cytokine (CCL18) secretion. In the current study, we performed purification of CMP-N-acetylneuraminic acid:lactosylceramide alpha2,3-sialyltransferase (GM3 synthase) from Triton X-100 extract of human blood mononuclear cells by immunoaffinity chromatography on Sepharose coupled with anti-GM3 synthase antibody. Comparison with several glycolipid substrates showed high specificity of the purified enzyme for lactosylceramide. The apparent K(M) for lactosylceramide and CMP-NeuAc were 101 and 180 muM, respectively. Analysis of the purified enzyme by SDS-PAGE followed by the anti-GM3 synthase antibody probing detected two bands with apparent molecular masses of 60 and 64 kDa. There were no other protein bands as revealed by Coomassie Blue staining. Thus, ganglioside GM3 may be considered as a physiological modulator of macrophage differentiation in human atherosclerotic aorta. The presented data suggest that up-regulation of GM3 levels is an element of monocyte/macrophage differentiation that provides a tool for control of macrophage accumulation in inflammatory loci.


Subject(s)
Atherosclerosis/pathology , Cell Differentiation , G(M3) Ganglioside/metabolism , Macrophages/cytology , Monocytes/cytology , Sialyltransferases/genetics , Aortic Diseases , Atherosclerosis/metabolism , G(M3) Ganglioside/analysis , Gene Expression Regulation, Enzymologic , Humans , Monocytes/chemistry , RNA, Messenger/analysis , Sialyltransferases/analysis , Sialyltransferases/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...