Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 584
Filter
2.
IUCrdata ; 9(Pt 6): x240612, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974847

ABSTRACT

The crystal structure of the title compound was determined at 120 K. It crystallizes in the triclinic space group P with four independent mol-ecules in the asymmetric unit. In the crystal, each symmetry-unique mol-ecule forms π-π stacks on itself, giving four unique π-π stacking inter-actions. Inter-molecular hydrogen bonding is observed between each pair of independent mol-ecules, where each hy-droxy group can act as a hydrogen-bond donor and acceptor.

3.
Biophys J ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39014895

ABSTRACT

Sensory hair cells, including the sensorimotor outer hair cells, which enable the sensitive, sharply tuned responses of the mammalian cochlea, are excited by radial shear between the organ of Corti and the overlying tectorial membrane. It is not currently possible to measure directly in vivo mechanical responses in the narrow cleft between the tectorial membrane and organ of Corti over a wide range of stimulus frequencies and intensities. The mechanical responses can, however, be derived by measuring hair cell receptor potentials. We demonstrate that the seemingly complex frequency- and intensity-dependent behavior of outer hair cell receptor potentials could be qualitatively explained by a two degrees of freedom system with local cochlear partition and tectorial membrane resonances strongly coupled by the outer hair cell stereocilia. A local minimum in the receptor potential below the characteristic frequency should always be observed at a frequency where the tectorial membrane mechanical impedance is minimal, i.e., at the presumed tectorial membrane resonance frequency. The tectorial membrane resonance frequency might, however, shift with stimulus intensity in accordance with a shift in the maximum of the tectorial membrane radial mechanical responses to lower frequencies, as observed in experiments.

4.
Nucleic Acids Res ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864377

ABSTRACT

Histones are essential for genome compaction and transcription regulation in eukaryotes, where they assemble into octamers to form the nucleosome core. In contrast, archaeal histones assemble into dimers that form hypernucleosomes upon DNA binding. Although histone homologs have been identified in bacteria recently, their DNA-binding characteristics remain largely unexplored. Our study reveals that the bacterial histone HBb (Bd0055) is indispensable for the survival of Bdellovibrio bacteriovorus, suggesting critical roles in DNA organization and gene regulation. By determining crystal structures of free and DNA-bound HBb, we unveil its distinctive dimeric assembly, diverging from those of eukaryotic and archaeal histones, while also elucidating how it binds and bends DNA through interaction interfaces reminiscent of eukaryotic and archaeal histones. Building on this, by employing various biophysical and biochemical approaches, we further substantiated the ability of HBb to bind and compact DNA by bending in a sequence-independent manner. Finally, using DNA affinity purification and sequencing, we reveal that HBb binds along the entire genomic DNA of B. bacteriovorus without sequence specificity. These distinct DNA-binding properties of bacterial histones, showcasing remarkable similarities yet significant differences from their archaeal and eukaryotic counterparts, highlight the diverse roles histones play in DNA organization across all domains of life.


Histones, traditionally known for organizing and regulating DNA in eukaryotes and archaea, have recently been discovered in bacteria, opening up a new frontier in our understanding of genome organization across the domains of life. Our study investigates the largely unexplored DNA-binding properties of bacterial histones, focusing on HBb in Bdellovibrio bacteriovorus. We reveal that HBb is essential for bacterial survival and exhibits DNA-binding properties similar to archaeal and eukaryotic histones. However, unlike eukaryotic and archaeal histones, which wrap DNA, HBb bends DNA without sequence specificity. This work not only broadens our understanding of DNA organization across different life forms but also suggests that bacterial histones may have diverse roles in genome organization.

5.
Commun Chem ; 7(1): 140, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902511

ABSTRACT

A key strategy for minimizing our reliance on precious metals is to increase the fraction of surface atoms and improve the metal-support interface. In this work, we employ a solvent/ligand/counterion-free method to deposit copper in the atomic form directly onto a nanotextured surface of graphitized carbon nanofibers (GNFs). Our results demonstrate that under these conditions, copper atoms coalesce into nanoparticles securely anchored to the graphitic step edges, limiting their growth to 2-5 nm. The resultant hybrid Cu/GNF material displays high selectivity in the CO2 reduction reaction (CO2RR) for formate production with a faradaic efficiency of ~94% at -0.38 V vs RHE and a high turnover frequency of 2.78 × 106 h-1. The Cu nanoparticles adhered to the graphitic step edges significantly enhance electron transfer to CO2. Long-term CO2RR tests coupled with atomic-scale elucidation of changes in Cu/GNF reveal nanoparticles coarsening, and a simultaneous increase in the fraction of single Cu atoms. These changes in the catalyst structure make the onset of the CO2 reduction potential more negative, leading to less formate production at -0.38 V vs RHE, correlating with a less efficient competition of CO2 with H2O for adsorption on single Cu atoms on the graphitic surfaces, revealed by density functional theory calculations.

6.
Clin Chem Lab Med ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38726766

ABSTRACT

OBJECTIVES: This study aimed to evaluate discrepancies in potassium measurements between point-of-care testing (POCT) and central laboratory (CL) methods, focusing on the impact of hemolysis on these measurements and its impact in the clinical practice in the emergency department (ED). METHODS: A retrospective analysis was conducted using data from three European university hospitals: Technische Universitat Munchen (Germany), Hospital Universitario La Paz (Spain), and Erasmus University Medical Center (The Netherlands). The study compared POCT potassium measurements in EDs with CL measurements. Data normalization was performed in categories for potassium levels (kalemia) and hemolysis. The severity of discrepancies between POCT and CL potassium measurements was assessed using the reference change value (RCV). RESULTS: The study identified significant discrepancies in potassium between POCT and CL methods. In comparing POCT normo- and mild hypokalemia against CL results, differences of -4.20 % and +4.88 % were noted respectively. The largest variance in the CL was a +4.14 % difference in the mild hyperkalemia category. Additionally, the RCV was calculated to quantify the severity of discrepancies between paired potassium measurements from POCT and CL methods. The overall hemolysis characteristics, as defined by the hemolysis gradient, showed considerable variation between the testing sites, significantly affecting the reliability of potassium measurements in POCT. CONCLUSIONS: The study highlighted the challenges in achieving consistent potassium measurement results between POCT and CL methods, particularly in the presence of hemolysis. It emphasised the need for integrated hemolysis detection systems in future blood gas analysis devices to minimise discrepancies and ensure accurate POCT results.

7.
Chempluschem ; : e202400247, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38803293

ABSTRACT

The potential of acetylene is extremely high both in chemical industry and synthetic applications due to unsaturated nature and the smallest active C≡C unit. The production of many essential necessities is originated from acetylene; however, the formation of acetylene molecule requires a lot of energy. Currently, the access to acetylene is based on coal processing, methane reforming and calcium carbide hydrolysis. Recently, extensive research has been done to decrease the cost of acetylene. In this review, the routes to acetylene were highlighted, considering the energy consumption in kW ⋅ h/t of the product to evaluate the best approach. Since energy prices depend on various regions, the cost of the product is complicated. The manufacturing of acetylene is usually accompanied by formation of by-products, which may be valuable or not. The review should help to identify current status and not overlook promising approaches.

8.
Macromol Rapid Commun ; 45(14): e2400074, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593474

ABSTRACT

Redox-conducting polymers based on SalEn-type complexes have attracted considerable attention due to their potential applications in electrochemical devices. However, their charge transfer mechanisms, physical and electrochemical properties remain unclear, hindering their rational design and optimization. This study aims to establish the influence of monomer geometry on the polymer's properties by investigating the properties of novel nonplanar SalEn-type complexes, poly[N,N'-bis(salicylidene)propylene-2-(hydroxy)diaminonickel(II)], and its analog with 2,2,6,6-tetramethylpiperidinyl-N-oxyl (TEMPO)-substituted bridge (MTS). To elucidate the charge transfer mechanism, operando UV-Vis spectroelectrochemical analysis, electrochemical impedance spectroscopy, and electron paramagnetic resonance are employed. Introducing TEMPO into the bridge moiety enhanced the specific capacity of the poly(MTS) material to 95 mA h g-1, attributed to TEMPO's and conductive backbone's charge storage capabilities. Replacement of the ethylenediimino-bridge with a 1,3-propylenediimino- bridge induced significant changes in the complex geometry and material's morphology, electrochemical, and spectral properties. At nearly the same potential, polaron and bipolaron particles emerged, suggesting intriguing features at the overlap point of the electroactivity potentials ranges of polaron-bipolaron and TEMPO, such as a disruption in the connection between TEMPO and the conjugation chain or intramolecular charge transfer. These results offer valuable insights for optimizing strategies to create organic materials with tailored properties for use in catalysis and battery applications.


Subject(s)
Cyclic N-Oxides , Oxidation-Reduction , Polymers , Cyclic N-Oxides/chemistry , Polymers/chemistry , Polymers/chemical synthesis , Ethylenediamines/chemistry , Molecular Structure , Electrochemical Techniques , Electric Conductivity
9.
Mol Neurobiol ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353924

ABSTRACT

ß2-Adrenoceptors (ß2-ARs) are the most abundant subtype of adrenergic receptors in skeletal muscles. Their activation via a stabilization of postsynaptic architecture has beneficial effects in certain models of neuromuscular disorders. However, the ability of ß2-ARs to regulate neuromuscular transmission at the presynaptic level is poorly understood. Using electrophysiological recordings and fluorescent FM dyes, we found that ß2-AR activation with fenoterol enhanced an involvement of synaptic vesicles in exocytosis and neurotransmitter release during intense activity at the neuromuscular junctions of mouse diaphragm. This was accompanied by an improvement of contractile responses to phrenic nerve stimulation (but not direct stimulation of the muscle fibers) at moderate-to-high frequencies. ß2-ARs mainly reside in lipid microdomains enriched with cholesterol and sphingomyelin. The latter is hydrolyzed by sphingomyelinases, whose upregulation occurs in many conditions characterized by muscle atrophy and sympathetic nerve hyperactivity. Sphingomyelinase treatment reversed the effects of ß2-AR agonist on the neurotransmitter release and synaptic vesicle recruitment to the exocytosis during intense activity. Inhibition of Gi protein with pertussis toxin completely prevented the sphingomyelinase-mediated inversion in the ß2-AR agonist action. Note that lipid raft disrupting enzyme cholesterol oxidase had the same effect on ß2-AR agonist-mediated changes in neurotransmission as sphingomyelinase. Thus, ß2-AR agonist fenoterol augmented recruitment and release of synaptic vesicles during intense activity in the diaphragm neuromuscular junctions. Sphingomyelin hydrolysis inversed the effects of ß2-AR agonist on neurotransmission probably via switching to Gi protein-dependent signaling. This phenomenon may reflect a dependence of the ß2-AR signaling on lipid raft integrity in the neuromuscular junctions.

10.
ACS Nano ; 18(9): 7148-7160, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38383159

ABSTRACT

Room-temperature magnetically switchable materials play a vital role in current and upcoming quantum technologies, such as spintronics, molecular switches, and data storage devices. The increasing miniaturization of device architectures produces a need to develop analytical tools capable of precisely probing spin information at the single-particle level. In this work, we demonstrate a methodology using negatively charged nitrogen vacancies (NV-) in fluorescent nanodiamond (FND) particles to probe the magnetic switching of a spin crossover (SCO) metal-organic framework (MOF), [Fe(1,6-naphthyridine)2(Ag(CN)2)2] material (1), and a single-molecule photomagnet [X(18-crown-6)(H2O)3]Fe(CN)6·2H2O, where X = Eu and Dy (materials 2a and 2b, respectively), in response to heat, light, and electron beam exposure. We employ correlative light-electron microscopy using transmission electron microscopy (TEM) finder grids to accurately image and sense spin-spin interacting particles down to the single-particle level. We used surface-sensitive optically detected magnetic resonance (ODMR) and magnetic modulation (MM) of FND photoluminescence (PL) to sense spins to a distance of ca. 10-30 nm. We show that ODMR and MM sensing was not sensitive to the temperature-induced SCO of FeII in 1 as formation of paramagnetic FeIII through surface oxidation (detected by X-ray photoelectron spectroscopy) on heating obscured the signal of bulk SCO switching. We found that proximal FNDs could effectively sense the chemical transformations induced by the 200 keV electron beam in 1, namely, AgI → Ag0 and FeII → FeIII. However, transformations induced by the electron beam are irreversible as they substantially disrupt the structure of MOF particles. Finally, we demonstrate NV- sensing of reversible photomagnetic switching, FeIII + (18-crown-6) ⇆ FeII + (18-crown-6)+ •, triggered in 2a and 2b by 405 nm light. The photoredox process of 2a and 2b proved to be the best candidate for room-temperature single-particle magnetic switching utilizing FNDs as a sensor, which could have applications into next-generation quantum technologies.

11.
Photochem Photobiol ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38258972

ABSTRACT

The question about acceptor molecules of optical radiation that determine the effects of photobiomodulation in relation to various types of cells still remains the focus of attention of researchers. This issue is most relevant for cancer cells, since, depending on the parameters of optical radiation, light can either stimulate their growth or inhibit them and lead to death. This study shows that endogenous porphyrins, which have sensitizing properties, may play an important role in the implementation of the effects of photobiomodulation, along with flavins. For the first time, using steady-state and kinetic spectrofluorimetry, free-base porphyrins and their zinc complexes were discovered and identified in living human cervical epithelial carcinoma (HeLa) cells, as well as in their extracts. It has been shown that reliable detection of porphyrin fluorescence in cells is hampered by the intense fluorescence of flavins due to their high concentration (micromolar range) and higher (compared to tetrapyrroles) fluorescence quantum yield. Optimization of the spectral range of excitation and the use of extractants that provide multiple quenching of the flavin component while increasing the emission efficiency of tetrapyrroles makes it possible to weaken the contribution of the flavin component to the recorded fluorescence spectra.

12.
ACS Nano ; 18(4): 2958-2971, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38251654

ABSTRACT

Single-atom dynamics of noble-gas elements have been investigated using time-resolved transmission electron microscopy (TEM), with direct observation providing for a deeper understanding of chemical bonding, reactivity, and states of matter at the nanoscale. We report on a nanoscale system consisting of endohedral fullerenes encapsulated within single-walled carbon nanotubes ((Kr@C60)@SWCNT), capable of the delivery and release of krypton atoms on-demand, via coalescence of host fullerene cages under the action of the electron beam (in situ) or heat (ex situ). The state and dynamics of Kr atoms were investigated by energy dispersive X-ray spectroscopy (EDS), electron energy loss spectroscopy (EELS), and X-ray photoelectron spectroscopy (XPS). Kr atom positions were measured precisely using aberration-corrected high-resolution TEM (AC-HRTEM), aberration-corrected scanning TEM (AC-STEM), and single-atom spectroscopic imaging (STEM-EELS). The electron beam drove the formation of 2Kr@C120 capsules, in which van der Waals Kr2 and transient covalent [Kr2]+ bonding states were identified. Thermal coalescence led to the formation of longer coalesced nested nanotubes containing more loosely bound Krn chains (n = 3-6). In some instances, delocalization of Kr atomic positions was confirmed by STEM analysis as the transition to a one-dimensional (1D) gas, as Kr atoms were constrained to only one degree of translational freedom within long, well-annealed, nested nanotubes. Such nested nanotube structures were investigated by Raman spectroscopy. This material represents a highly compressed and dimensionally constrained 1D gas stable under ambient conditions. Direct atomic-scale imaging has revealed elusive bonding states and a previously unseen 1D gaseous state of matter of this noble gas element, demonstrating TEM to be a powerful tool in the discovery of chemistry at the single-atom level.

13.
J Neurosci ; 44(4)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38050104

ABSTRACT

Outer hair cells (OHCs) of the organ of Corti (OoC), acting as bidirectional cellular mechanoelectrical transducers, generate, receive, and exchange forces with other major elements of the cochlear partition, including the sensory inner hair cells (IHCs). Force exchange is mediated via a supporting cell scaffold, including Deiters' (DC) and outer pillar cells (OPC), to enable the sensitivity and exquisite frequency selectivity of the mammalian cochlea and to transmit its responses to the auditory nerve. To selectively activate DCs and OPCs in male and female mice, we conditionally expressed in them a hyperpolarizing halorhodopsin (HOP), a light-gated inward chloride ion pump, and measured extracellular receptor potentials (ERPs) and their DC component (ERPDCs) from the cortilymph, which fills the OoC fluid spaces, and compared the responses with similar potentials from HOP-/- littermates. The compound action potentials (CAP) of the auditory nerve were measured as an indication of IHC activity and transmission of cochlear responses to the CNS. HOP light-activated hyperpolarization of DCs and OPCs suppressed cochlear amplification through changing the timing of its feedback, altered basilar membrane (BM) responses to tones at all measured levels and frequencies, and reduced IHC excitation. HOP activation findings reported here complement recent studies that revealed channelrhodopsin activation depolarized DCs and OPCs and effectively bypassed, rather than blocked, the control of OHC mechanical and electrical responses to sound and their contribution to timed and directed electromechanical feedback to the mammalian cochlea. Moreover, our findings identify DCs and OPCs as potential targets for the treatment of noise-induced hearing loss.


Subject(s)
Hair Cells, Auditory, Outer , Hair Cells, Vestibular , Female , Male , Mice , Animals , Hair Cells, Auditory, Outer/physiology , Optogenetics , Cochlea/physiology , Hair Cells, Auditory, Inner/physiology , Organ of Corti/physiology , Mammals
14.
Neurochem Res ; 49(2): 453-465, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37897557

ABSTRACT

α2-Adrenoreceptors (ARs) are main Gi-protein coupled autoreceptors in sympathetic nerve terminals and targets for dexmedetomidine (DEX), a widely used sedative. We hypothesize that α2-ARs are also potent regulators of neuromuscular transmission via G protein-gated inwardly rectifying potassium (GIRK) channels. Using extracellular microelectrode recording of postsynaptic potentials, we found DEX-induced inhibition of spontaneous and evoked neurotransmitter release as well as desynchronization of evoked exocytotic events in the mouse diaphragm neuromuscular junction. These effects were suppressed by SKF-86,466, a selective α2-AR antagonist. An activator of GIRK channels ML297 had the same effects on neurotransmitter release as DEX. By contrast, inhibition of GIRK channels with tertiapin-Q prevented the action of DEX on evoked neurotransmitter release, but not on spontaneous exocytosis. The synaptic vesicle exocytosis is strongly dependent on Ca2+ influx through voltage-gated Ca2+ channels (VGCCs), which can be negatively regulated via α2-AR - GIRK channel axis. Indeed, inhibition of P/Q-, L-, N- or R-type VGCCs prevented the inhibitory action of DEX on evoked neurotransmitter release; antagonists of P/Q- and N-type channels also suppressed the DEX-mediated desynchronization of evoked exocytotic events. Furthermore, inhibition of P/Q-, L- or N-type VGCCs precluded the frequency decrease of spontaneous exocytosis upon DEX application. Thus, α2-ARs acting via GIRK channels and VGCCs (mainly, P/Q- and N-types) exert inhibitory effect on the neuromuscular communication by attenuating and desynchronizing evoked exocytosis. In addition, α2-ARs can suppress spontaneous exocytosis through GIRK channel-independent, but VGCC-dependent pathway.


Subject(s)
Neuromuscular Junction , Synaptic Transmission , Mice , Animals , Synaptic Transmission/physiology , Neuromuscular Junction/physiology , Potassium , GTP-Binding Proteins , Neurotransmitter Agents/pharmacology
15.
RSC Adv ; 13(51): 36079-36087, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38090071

ABSTRACT

In the last decade, organic-inorganic hybrid halide perovskite materials have developed into a very large research area in photovoltaics and optoelectronics as promising light harvesters. Lead-free double perovskites have recently been investigated as an environmentally friendly alternative to the lead-containing compositions. However, lead-free organic-inorganic hybrid halide double perovskites have so far rarely been produced due to a certain complexity in their synthesis. A number of small molecular cations have been investigated, but compositions containing azetidinium, which is a 4-membered heterocyclic molecular ring, on the A-site have hardly been considered. This study investigates the potential of [(CH2)3NH2]2AgBiBr6 as an optical absorber in photovoltaics or optoelectronics. The use of this alternative cation changes the crystal symmetry significantly. Columns of alternating metal cation form which are separated by the organic ions. While crystal symmetry is rather different from the perovskites, the overall properties as an absorber are similar. It is thus worthwhile to further investigate alternate hybrid compositions which form into other symmetries than the perovskite base structure.

16.
Langmuir ; 39(50): 18509-18517, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38060200

ABSTRACT

The modification of photocathodes based on copper(I) oxide (COPC) by coating with ZnO nanoparticles or graphene oxide (GO) with different compositions and morphologies is considered. To cover the catalyst surface with graphene oxide, a technique was proposed via freezing of a sprayed aqueous suspension of graphene oxide followed by sublimation drying under vacuum conditions. This method improves the uniformity of the GO layer in comparison with the traditional drop-casting method and, as a result, improves the photocatalytic properties of the COPC. The influence of the composition and morphology of graphene oxide on the photocatalytic activity and stability of COPC has been established. ZnO nanoparticles and GO particles in contact with copper(I) oxide increase the photocurrent density by the more efficient separation of light-generated charge carriers, providing higher photocathode stability required in photocatalytic water splitting.

17.
Arch Biochem Biophys ; 749: 109803, 2023 11.
Article in English | MEDLINE | ID: mdl-37955112

ABSTRACT

Membrane cholesterol oxidation is a hallmark of redox and metabolic imbalance, and it may accompany neurodegenerative disorders. Using microelectrode recordings of postsynaptic responses as well as fluorescent dyes for monitoring synaptic vesicle cycling and membrane properties, the action of enzymatic cholesterol oxidation on neuromuscular transmission was studied in the mice diaphragms. Cholesterol oxidase (ChO) at low concentration disturbed lipid-ordering specifically in the synaptic membranes, but it did not change markedly spontaneous exocytosis and evoked release in response to single stimuli. At low external Ca2+ conditions, analysis of single exocytotic events revealed a decrease in minimal synaptic delay and the probability of exocytosis upon plasmalemmal cholesterol oxidation. At moderate- and high-frequency activity, ChO treatment enhanced both neurotransmitter and FM-dye release. Furthermore, it precluded a change in exocytotic mode from full-fusion to kiss-and-run during high-frequency stimulation. Accumulation of extracellular acetylcholine (without stimulation) dependent on vesamicol-sensitive transporters was suppressed by ChO. The effects of plasmalemmal cholesterol oxidation on both neurotransmitter/dye release at intense activity and external acetylcholine levels were reversed when synaptic vesicle membranes were also exposed to ChO (i.e., the enzyme treatment was combined with induction of exo-endocytotic cycling). Thus, we suggest that plasmalemmal cholesterol oxidation affects exocytotic machinery functioning, enhances synaptic vesicle recruitment to the exocytosis and decreases extracellular neurotransmitter levels at rest, whereas ChO acting on synaptic vesicle membranes suppresses the participation of the vesicles in the subsequent exocytosis and increases the neurotransmitter leakage. The mechanisms underlying ChO action can be related to the lipid raft disruption.


Subject(s)
Acetylcholine , Cholesterol Oxidase , Mice , Animals , Cholesterol Oxidase/metabolism , Cholesterol Oxidase/pharmacology , Acetylcholine/metabolism , Acetylcholine/pharmacology , Synaptic Transmission/physiology , Neuromuscular Junction/metabolism , Cholesterol/metabolism , Neurotransmitter Agents/metabolism , Neurotransmitter Agents/pharmacology
18.
Opt Lett ; 48(22): 5972-5975, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37966766

ABSTRACT

This study presents the controllable multi-frequency self-injection locking regimes realization with an original experimental setup composed of a reflective semiconductor optical amplifier, an external feedback mirror, and a high-Q chip-scale Si3N4 ring microresonator. Our findings demonstrate the conditions of multiple modes' simultaneous locking being analogous to Vernier effect. We varied the free spectral range of the external-cavity laser by its length tuning, enabling the robust generations from 1 to 4 self-injection locked narrow lines on demand, that is important for optical telecommunications, and photonic-based microwave and THz sources.

19.
Nanoscale Adv ; 5(23): 6423-6434, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38024305

ABSTRACT

Spin-active nanomaterials play a vital role in current and upcoming quantum technologies, such as spintronics, data storage and computing. To advance the design and application of these materials, methods to link size, shape, structure, and chemical composition with functional magnetic properties at the nanoscale level are needed. In this work, we combine the power of two local probes, namely, Nitrogen Vacancy (NV) spin-active defects in diamond and an electron beam, within experimental platforms used in electron microscopy. Negatively charged NVs within fluorescent nanodiamond (FND) particles are used to sense the local paramagnetic environment of Rb0.5Co1.3[Fe(CN)6]·3.7H2O nanoparticles (NPs), a Prussian blue analogue (PBA), as a function of FND-PBA distance (order of 10 nm) and local PBA concentration. We demonstrate perturbation of NV spins by proximal electron spins of transition metals within NPs, as detected by changes in the photoluminescence (PL) of NVs. Workflows are reported and demonstrated that employ a Transmission Electron Microscope (TEM) finder grid to spatially correlate functional and structural features of the same unique NP studied using NV sensing, based on a combination of Optically Detected Magnetic Resonance (ODMR) and Magnetic Modulation (MM) of NV PL, within TEM imaging modalities. Significantly, spin-spin dipole interactions were detected between NVs in a single FND and paramagnetic metal centre spin fluctuations in NPs through a carbon film barrier of 13 nm thickness, evidenced by TEM tilt series imaging and Electron Energy-Loss Spectroscopy (EELS), opening new avenues to sense magnetic materials encapsulated in or between thin-layered nanostructures. The measurement strategies reported herein provide a pathway towards solid-state quantitative NV sensing with atomic-scale theoretical spatial resolution, critical to the development of quantum technologies, such as memory storage and molecular switching nanodevices.

20.
Phys Rev E ; 108(3-2): 035101, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37849164

ABSTRACT

Reported in the paper are results of unsteady three-dimensional direct numerical simulations of laminar and turbulent, lean hydrogen-air, complex-chemistry flames propagating in forced turbulence in a box. To explore the eventual influence of thermodiffusive instability of laminar flames on turbulent burning velocity, (i) a critical length scale Λ_{n} that bounds regimes of unstable and stable laminar combustion is numerically determined by gradually decreasing the width Λ of computational domain until a stable laminar flame is obtained, and (ii) simulations of turbulent flames are performed by varying the width from Λ<Λ_{n} (in this case, the instability is suppressed) to Λ>Λ_{n} (in this case, the instability may grow). Moreover, simulations are performed either using mixture-averaged transport properties (low Lewis number flames) or setting diffusivities of all species equal to heat diffusivity of the mixture (equidiffusive flames), with all other things being equal. Obtained results show a significant increase in turbulent burning velocity U_{T} when the boundary Λ=Λ_{n} is crossed in weak turbulence, but almost equal values of U_{T} are computed at Λ<Λ_{n} and Λ>Λ_{n} in moderately turbulent flames characterized by a Karlovitz number equal to 3.4 or larger. These results imply that thermodiffusive instability of laminar premixed flames substantially affects burning velocity in weak turbulence only, in line with a simple criterion proposed by Chomiak and Lipatnikov (Phys. Rev. E 107, 015102, (2023)10.1103/PhysRevE.107.015102).

SELECTION OF CITATIONS
SEARCH DETAIL
...