Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-447527

ABSTRACT

Recently emerged SARS-CoV-2 variants show resistance to some antibodies that were authorized for emergency use. We employed hybridoma technology combined with authentic virus assays to develop second-generation antibodies, which were specifically selected for their ability to neutralize new variants of SARS-CoV-2. AX290 and AX677, two monoclonal antibodies with non-overlapping epitopes, exhibit subnanomolar or nanomolar affinities to the receptor binding domain of the viral Spike protein carrying amino acid substitutions N501Y, N439K, E484K, K417N, and a combination N501Y/E484K/K417N found in the circulating virus variants. The antibodies showed excellent neutralization of an authentic SARS-CoV-2 virus representing strains circulating in Europe in spring 2020 and also the variants of concern B.1.1.7 and B.1.351. Finally, the combination of the two antibodies prevented the appearance of escape mutations of the authentic SARS-CoV-2 virus. The neutralizing properties were fully reproduced in chimeric mouse-human versions, which may represent a promising tool for COVID-19 therapy.

2.
FEMS Immunol Med Microbiol ; 57(3): 203-13, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19732140

ABSTRACT

Neurological manifestations caused by neuroinvading pathogens are typically attributed to penetration of the blood-brain barrier (BBB) and invasion of the central nervous system. However, the mechanisms used by many pathogens (such as Borrelia) to traverse the BBB are still unclear. Recent studies revealed that microbial translocation across the BBB must involve a repertoire of microbial-host interactions (receptor-ligand interactions). However, the array of interacting molecules responsible for the borrelial translocation is not yet clearly known. Pathogens bind several host molecules (plasminogen, glycosaminoglycans, factor H, etc.) that might mediate endothelial interactions in vivo. This review summarizes our current understanding of the pathogenic mechanisms involved in the translocation of the BBB by neuroinvasive pathogens.


Subject(s)
Bacteria/pathogenicity , Blood-Brain Barrier/microbiology , Fungi/pathogenicity , Host-Pathogen Interactions , Parasites/pathogenicity , Viruses/pathogenicity , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...