Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Dalton Trans ; 52(14): 4276-4289, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-36961520

ABSTRACT

Pseudomonas aeruginosa is an opportunistic, Gram-negative bacterium, involved in severe infections associated with cystic fibrosis, pneumonia, burn wounds, ocular diseases, and immunosuppressive illnesses, and is a major cause of intrahospital infections. This bacterium is also one of the most commercially and biotechnologically significant microorganisms, since it can produce valuable biomolecules which represent a rich source of potential drug candidates. On the other hand, metal complexes have been used in medicine for both therapeutic and diagnostic purposes since ancient times. This class of compounds can adopt different geometries and generally have a three-dimensional shape, contributing to their higher clinical success compared to flat purely organic compounds. In the present review article, attention has been devoted to the three natural products derived from P. aeruginosa, namely pyocyanin, pyochelin, and pyoverdine(s) and their ability to form complexes with different metal ions, including iron(II/III), manganese(II/III), gallium(III), chromium(III), nickel(II), copper(II), zinc(II) and cadmium(II). Investigation of the coordination properties of pyocyanin, pyochelin, and pyoverdine(s) towards these metal ions is important because the resulting bacterially derived natural product-metal complex can serve as a model for the study of metal ion metabolism (transport and storage) in living systems and might also be considered as a novel therapeutic agent for potential use in medicine.


Subject(s)
Coordination Complexes , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolism , Coordination Complexes/metabolism , Pyocyanine/metabolism
2.
RSC Adv ; 13(7): 4376-4393, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36744286

ABSTRACT

Dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz) was used as a ligand for the synthesis of new copper(ii) and silver(i) complexes, [CuCl2(py-2pz)]2 (1), [Cu(CF3SO3)(H2O)(py-2pz)2]CF3SO3·2H2O (2), [Ag(py-2pz)2]PF6 (3) and {[Ag(NO3)(py-2pz)]·0.5H2O} n (4). The complexes were characterized by spectroscopic and electrochemical methods, while their structures were determined by single crystal X-ray diffraction analysis. The X-ray analysis revealed the bidentate coordination mode of py-2pz to the corresponding metal ion via its pyridine and pyrazine nitrogen atoms in all complexes, while in polynuclear complex 4, the heterocyclic pyrazine ring of one py-2pz additionally behaves as a bridging ligand between two Ag(i) ions. DFT calculations were performed to elucidate the structures of the investigated complexes in solution. The antimicrobial potential of the complexes 1-4 was evaluated against two bacterial (Pseudomonas aeruginosa and Staphylococcus aureus) and two Candida (C. albicans and C. parapsilosis) species. Silver(i) complexes 3 and 4 have shown good antibacterial and antifungal properties with minimal inhibitory concentration (MIC) values ranging from 4.9 to 39.0 µM (3.9-31.2 µg mL-1). All complexes inhibited the filamentation of C. albicans and hyphae formation, while silver(i) complexes 3 and 4 had also the ability to inhibit the biofilm formation process of this fungus. The binding affinity of the complexes 1-4 with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) was studied by fluorescence emission spectroscopy to clarify the mode of their antimicrobial activity. Catechol oxidase biomimetic catalytic activity of copper(ii) complexes 1 and 2 was additionally investigated by using 3,5-di-tert-butylcatechol (3,5-DTBC) and o-aminophenol (OAP) as substrates.

3.
Molecules ; 26(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810316

ABSTRACT

Three new silver(I) complexes [Ag(NO3)(tia)(H2O)]n (Ag1), [Ag(CF3SO3)(1,8-naph)]n (Ag2) and [Ag2(1,8-naph)2(H2O)1.2](PF6)2 (Ag3), where tia is thianthrene and 1,8-naph is 1,8-naphthyridine, were synthesized and structurally characterized by different spectroscopic and electrochemical methods and their crystal structures were determined by single-crystal X-ray diffraction analysis. Their antimicrobial potential was evaluated against four bacterial and three Candida species, and the obtained results revealed that these complexes showed significant activity toward the Gram-positive Staphylococcus aureus, Gram-negative Pseudomonas aeruginosa and the investigated Candida species with minimal inhibitory concentration (MIC) values in the range 1.56-7.81 µg/mL. On the other hand, tia and 1,8-naph ligands were not active against the investigated strains, suggesting that their complexation with Ag(I) ion results in the formation of antimicrobial compounds. Moreover, low toxicity of the complexes was detected by in vivo model Caenorhabditis elegans. The interaction of the complexes with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) was studied to evaluate their binding affinity towards these biomolecules for possible insights into the mode of antimicrobial activity. The binding affinity of Ag1-3 to BSA was higher than that for DNA, indicating that proteins could be more favorable binding sites for these complexes in comparison to the nucleic acids.


Subject(s)
Anti-Infective Agents , Coordination Complexes , Heterocyclic Compounds/chemistry , Naphthyridines/chemistry , Silver/chemistry , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Caenorhabditis elegans/drug effects , Candida/drug effects , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Coordination Complexes/pharmacology , DNA/metabolism , Molecular Structure , Protein Binding , Serum Albumin, Bovine/metabolism
4.
Dalton Trans ; 50(7): 2627-2638, 2021 Feb 21.
Article in English | MEDLINE | ID: mdl-33523054

ABSTRACT

Five novel copper(ii) complexes with pyridine-4,5-dicarboxylate esters as ligands, [Cu(NO3)(py-2tz)(H2O)3]NO3 (1), [Cu(NO3)2(py-2metz)(H2O)] (2), [Cu(NO3)2(py-2py)(H2O)]·H2O (3), [CuCl2(py-2tz)]2 (4) and [CuCl2(py-2metz)]n (5) (py-2tz is dimethyl 2-(thiazol-2-yl)pyridine-4,5-dicarboxylate, py-2metz is dimethyl 2-(4-methylthiazol-2-yl)pyridine-4,5-dicarboxylate and py-2py is dimethyl 2,2'-bipyridine-4,5-dicarboxylate), were synthesized and structurally characterized by different spectroscopic and electrochemical methods. The structure of these complexes was determined by single-crystal X-ray diffraction analysis, confirming the bidentate coordination mode of the corresponding pyridine-4,5-dicarboxylate ester to the Cu(ii) ion through the nitrogen atoms. The antimicrobial potential of copper(ii) complexes 1-5 was assessed against two bacterial and two Candida species. These complexes showed better growth inhibiting activity against Candida spp. with respect to the tested bacterial species, also being moderately toxic towards normal human lung fibroblast cells (MRC-5). Complexes 1 and 4 showed the greatest ability to inhibit the filamentation of C. albicans, which is an important process during fungal infection, and these two complexes efficiently inhibited the biofilm formation of C. albicans at subinhibitory concentrations. Complex 4 also successfully prevented the adhesion of C. albicans in an in vitro epithelial cell model. The mechanism of the antifungal activity of copper(ii) complexes 1-5 was studied through their interaction with ct-DNA, as one of the possible target biomolecules, by fluorescence spectroscopy and gel electrophoresis. Finally, the ability of these complexes to bind to bovine serum albumin (BSA) was studied by fluorescence emission spectroscopy.


Subject(s)
Antifungal Agents , Candida/drug effects , Coordination Complexes , Copper , Esters , Pyridines , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Candida/growth & development , Cell Line , Cell Proliferation/drug effects , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Copper/chemistry , Copper/pharmacology , DNA/chemistry , Esters/chemistry , Esters/pharmacology , Humans , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Pyridines/chemistry , Pyridines/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development
5.
Bioinorg Chem Appl ; 2020: 3812050, 2020.
Article in English | MEDLINE | ID: mdl-32351550

ABSTRACT

1,2-Bis(4-pyridyl)ethane (bpa) and 1,2-bis(4-pyridyl)ethene (bpe) were used for the synthesis of polynuclear silver(I) complexes, {[Ag(bpa)]NO3}n (1), {[Ag(bpa)2]CF3SO3 .H2O}n (2) and {[Ag(bpe)]CF3SO3}n (3). In complexes 1-3, the corresponding nitrogen-containing heterocycle acts as a bridging ligand between two Ag(I) ions. In vitro antimicrobial activity of these complexes, along with the ligands used for their synthesis, was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi. The silver(I) complexes 1-3 showed selectivity towards Candida spp. and Gram-negative Escherichia coli in comparison to the other investigated bacterial strains, effectively inhibiting the growth of four different Candida species with minimal inhibitory concentrations (MICs) between 2.5 and 25 µg/mL and the growth of E. coli, with MIC value being 12.5 µg/mL. Importantly, complex 2 significantly reduced C. albicans filamentation, an essential process for its pathogenesis. Antiproliferative effect on the normal human lung fibroblast cell line MRC-5 was also evaluated with the aim of determining the therapeutic potential of the complexes 1-3. The interactions of these complexes with calf thymus DNA (ctDNA) and bovine serum albumin (BSA) were studied to evaluate their binding activities towards these biomolecules for possible insights on their mode of action.

6.
J Inorg Biochem ; 208: 111089, 2020 07.
Article in English | MEDLINE | ID: mdl-32442762

ABSTRACT

Three novel Zn(II) complexes, [ZnCl2(qz)2] (1), [ZnCl2(1,5-naph)]n (2) and [ZnCl2(4,7-phen)2] (3), where qz is quinazoline, 1,5-naph is 1,5-naphthyridine and 4,7-phen is 4,7-phenanthroline, were synthesized by the reactions of ZnCl2 and the corresponding N-heterocyclic ligand in 1:2 molar ratio in ethanol at ambient temperature. The characterization of these complexes was done by NMR, IR and UV-Vis spectroscopy, and their crystal structures were determined by single-crystal X-ray diffraction analysis. Complexes 1 and 3 are mononuclear species, in which Zn(II) ion is tetrahedrally coordinated by two nitrogen atoms belonging to two qz or 4,7-phen ligands, respectively, and by two chloride anions, while complex 2 is a 1D coordination polymer that contains 1,5-naph as bridging ligand between two metal ions. In agar disc-diffusion assay, complexes 1-3 manifested good inhibitory activity against two investigated Candida strains (C. albicans and C. parapsilosis), while not inducing toxic effects on the healthy human fibroblast cell line (MRC-5). This activity was not fungicidal, as revealed by the broth microdilution assay, however complex 3 showed the ability to modulate Candida hyphae formation, which is an important process during infection and showed significant synergistic effect with clinically used antifungal polyene nystatin.


Subject(s)
Antifungal Agents , Candida albicans/growth & development , Candida parapsilosis/growth & development , Coordination Complexes , Heterocyclic Compounds , Nystatin , Zinc , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Cell Line, Tumor , Coordination Complexes/agonists , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Drug Synergism , Heterocyclic Compounds/agonists , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Humans , Nystatin/agonists , Nystatin/chemistry , Nystatin/pharmacology , Zinc/agonists , Zinc/chemistry , Zinc/pharmacology
7.
Dalton Trans ; 49(18): 6084-6096, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32319493

ABSTRACT

Infections of the cow udder leading to mastitis and lower milk quality are one of the biggest problems in the dairy industry worldwide. Unfortunately, therapeutic options for the treatment of cow mastitis are limited as a consequence of the development of pathogens that are resistant to conventionally used antibiotics. In the search for agents that will be active against cow mastitis associated pathogens, in the present study, five new silver(i) complexes with different chelating pyridine-4,5-dicarboxylate types of ligands, [Ag(NO3)(py-2py)]n (1), [Ag(NO3)(py-2metz)]n (2), [Ag(CH3CN)(py-2py)]BF4 (3), [Ag(py-2tz)2]BF4 (4) and [Ag(py-2metz)2]BF4 (5), py-2py is dimethyl 2,2'-bipyridine-4,5-dicarboxylate, py-2metz is dimethyl 2-(4-methylthiazol-2-yl)pyridine-4,5-dicarboxylate and py-2tz is dimethyl 2-(thiazol-2-yl)pyridine-4,5-dicarboxylate, were synthesized, structurally characterized and assessed for in vitro antimicrobial activity using both standard bioassay and clinical isolates from a contaminated milk sample obtained from a cow with mastitis. These complexes showed remarkable activity against the standard panel of microorganisms and a selection of clinical isolates from the milk of the cow diagnosed with mastitis. With the aim of determining the therapeutic potential of silver(i) complexes, their toxicity in vivo against the model organism, Caenorhabditis elegans (C. elegans), was investigated. The complexes that had the best therapeutic profile, 2 and 5, induced bacterial membrane depolarization and the production of reactive oxygen species (ROS) in Candida albicans cells and inhibited the hyphae as well as the biofilm formation. Taken together, the presented data suggest that the silver(i) complexes with pyridine ligands could be considered for the treatment of microbial pathogens, which are causative agents of cow mastitis.


Subject(s)
Antifungal Agents/pharmacology , Caenorhabditis elegans/drug effects , Candida albicans/drug effects , Coordination Complexes/pharmacology , Mastitis/drug therapy , Pyridines/chemistry , Silver/pharmacology , Animals , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Caenorhabditis elegans/pathogenicity , Candida albicans/growth & development , Candida albicans/metabolism , Cattle , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Crystallography, X-Ray , Female , Ligands , Mastitis/microbiology , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Particle Size , Reactive Oxygen Species/metabolism , Silver/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...