Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
J Exp Bot ; 72(22): 7876-7890, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34402880

ABSTRACT

C4 photosynthesis is typically characterized by the spatial compartmentalization of the photosynthetic reactions into mesophyll (M) and bundle sheath (BS) cells. Initial carbon fixation within M cells gives rise to C4 acids, which are transported to the BS cells. There, C4 acids are decarboxylated so that the resulting CO2 is incorporated into the Calvin cycle. This work is focused on the study of Setaria viridis, a C4 model plant, closely related to several major feed and bioenergy grasses. First, we performed the heterologous expression and biochemical characterization of Setaria isoforms for chloroplastic NADP-malic enzyme (NADP-ME) and mitochondrial NAD-malic enzyme (NAD-ME). The kinetic parameters obtained agree with a major role for NADP-ME in the decarboxylation of the C4 acid malate in the chloroplasts of BS cells. In addition, mitochondria-located NAD-ME showed regulatory properties that could be important in the context of the operation of the C4 carbon shuttle. Secondly, we compared the proteomes of M and BS compartments and found 825 differentially accumulated proteins that could support different metabolic scenarios. Most interestingly, we found evidence of metabolic strategies to insulate the C4 core avoiding the leakage of intermediates by either up-regulation or down-regulation of chloroplastic, mitochondrial, and peroxisomal proteins. Overall, the results presented in this work provide novel data concerning the complexity of C4 metabolism, uncovering future lines of research that will undoubtedly contribute to the expansion of knowledge on this topic.


Subject(s)
Setaria Plant , Chloroplasts/metabolism , Malate Dehydrogenase/metabolism , Photosynthesis , Plant Leaves/metabolism , Plants/metabolism , Setaria Plant/metabolism
2.
Plant J ; 101(3): 653-665, 2020 02.
Article in English | MEDLINE | ID: mdl-31626366

ABSTRACT

In acidic soils, aluminum (Al) toxicity is a significant limitation to crop production worldwide. Given its Al-binding capacity, malate allows internal as well as external detoxification strategies to cope with Al stress, but little is known about the metabolic processes involved in this response. Here, we analyzed the relevance of NADP-dependent malic enzyme (NADP-ME), which catalyzes the oxidative decarboxylation of malate, in Al tolerance. Plants lacking NADP-ME1 (nadp-me1) display reduced inhibition of root elongation along Al treatment compared with the wild type (wt). Moreover, wt roots exposed to Al show a drastic decrease in NADP-ME1 transcript levels. Although malate levels in seedlings and root exudates are similar in nadp-me1 and wt, a significant increase in intracellular malate is observed in roots of nadp-me1 after long exposure to Al. The nadp-me1 plants also show a lower H2 O2 content in root apices treated with Al and no inhibition of root elongation when exposed to glutamate, an amino acid implicated in Al signaling. Proteomic studies showed several differentially expressed proteins involved in signal transduction, primary metabolism and protection against biotic and other abiotic stimuli and redox processes in nadp-me1, which may participate directly or indirectly in Al tolerance. The results indicate that NADP-ME1 is involved in adjusting the malate levels in the root apex, and its loss results in an increased content of this organic acid. Furthermore, the results suggest that NADP-ME1 affects signaling processes, such as the generation of reactive oxygen species and those that involve glutamate, which could lead to inhibition of root growth.


Subject(s)
Aluminum/toxicity , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Malate Dehydrogenase (NADP+)/metabolism , Malates/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Loss of Function Mutation , Malate Dehydrogenase (NADP+)/genetics , Plant Roots/enzymology , Plant Roots/genetics , Plant Roots/physiology , Proteomics , Stress, Physiological
3.
FEBS J ; 286(16): 3255-3271, 2019 08.
Article in English | MEDLINE | ID: mdl-30993890

ABSTRACT

Detoxification of methylglyoxal, a toxic by-product of central sugar metabolism, is a major issue for all forms of life. The glyoxalase pathway evolved to effectively convert methylglyoxal into d-lactate via a glutathione hemithioacetal intermediate. Recently, we have shown that the monomeric glyoxalase I from maize exhibits a symmetric fold with two cavities, potentially harboring two active sites, in analogy with homodimeric enzyme surrogates. Here we confirm that only one of the two cavities exhibits glyoxalase I activity and show that it adopts a tunnel-shaped structure upon substrate binding. Such conformational change gives rise to independent binding sites for glutathione and methylglyoxal in the same active site, with important implications for the molecular reaction mechanism, which has been a matter of debate for several decades. DATABASE: Structural data are available in The Protein Data Bank database under the accession numbers 6BNN, 6BNX, and 6BNZ.


Subject(s)
Lactoylglutathione Lyase/chemistry , Macromolecular Substances/chemistry , Protein Conformation , Zea mays/enzymology , Amino Acid Sequence/genetics , Catalytic Domain/genetics , Lactoylglutathione Lyase/genetics , Lactoylglutathione Lyase/ultrastructure , Macromolecular Substances/ultrastructure , Protein Folding , Pyruvaldehyde/chemistry , Substrate Specificity , Sugars/metabolism
4.
Front Plant Sci ; 9: 1637, 2018.
Article in English | MEDLINE | ID: mdl-30459802

ABSTRACT

Arabidopsis thaliana possesses three cytosolic (NADP-ME1-3) and one plastidic (NADP-ME4) NADP-dependent malic enzymes. NADP-ME2 and -ME4 show constitutive expression, in contrast to NADP-ME1 and -ME3, which are restricted to particular tissues. Here, we show that NADP-ME1 transcript and protein were almost undetectable during normal vegetative growth, but gradually increased and reached levels higher than those of the other isoforms in the latest stages of seed development. Accordingly, in knockout nadp-me1 mature seeds the total NADP-ME activity was significantly lower than in wild type mature seeds. The phenotypic analysis of nadp-me1 plants indicated alterations of seed viability and germination. Besides, the treatment with abscisic acid (ABA), NaCl and mannitol specifically induced the accumulation of NADP-ME1 in seedlings. In line with this, nadp-me1 plants show a weaker response of primary and lateral root length and stomatal opening to the presence of ABA. The results suggest that NADP-ME1 plays a specialized role, linked to ABA signaling during the seed development as well as in the response to water deficit stress.

5.
Front Plant Sci ; 9: 565, 2018.
Article in English | MEDLINE | ID: mdl-29868045

ABSTRACT

Malic enzyme (ME) comprises a family of proteins with multiple isoforms located in different compartments of eukaryotic cells. In plants, cytosolic and plastidic enzymes share several characteristics such as NADP specificity (NADP-ME), oxaloacetate decarboxylase (OAD) activity, and homo-oligomeric assembly. However, mitochondrial counterparts are NAD-dependent proteins (mNAD-ME) lacking OAD activity, which can be structured as homo- and hetero-oligomers of two different subunits. In this study, we examined the molecular basis of these differences using multiple sequence analysis, structural modeling, and phylogenetic approaches. Plant mNAD-MEs show the lowest identity values when compared with other eukaryotic MEs with major differences including short amino acid insertions distributed throughout the primary sequence. Some residues in these exclusive segments are co-evolutionarily connected, suggesting that they could be important for enzymatic functionality. Phylogenetic analysis indicates that eukaryotes from different kingdoms used different strategies for acquiring the current set of NAD(P)-ME isoforms. In this sense, while the full gene family of vertebrates derives from the same ancestral gene, plant NADP-ME and NAD-ME isoforms have a distinct evolutionary history. Plant NADP-ME genes may have arisen from the α-protobacterial-like mitochondrial ancestor, a characteristic shared with major eukaryotic taxa. On the other hand, plant mNAD-ME genes were probably gained through an independent process involving the Archaeplastida ancestor. Finally, several residue signatures unique to all plant mNAD-MEs could be identified, some of which might be functionally connected to their exclusive biochemical properties. In light of these results, molecular evolutionary scenarios for these widely distributed enzymes in plants are discussed.

6.
FEBS J ; 285(12): 2205-2224, 2018 06.
Article in English | MEDLINE | ID: mdl-29688630

ABSTRACT

Arabidopsis thaliana possesses two fumarase genes (FUM), AtFUM1 (At2g47510) encoding for the mitochondrial Krebs cycle-associated enzyme and AtFUM2 (At5g50950) for the cytosolic isoform required for fumarate massive accumulation. Here, the comprehensive biochemical studies of AtFUM1 and AtFUM2 shows that they are active enzymes with similar kinetic parameters but differential regulation. For both enzymes, fumarate hydratase (FH) activity is favored over the malate dehydratase (MD) activity; however, MD is the most regulated activity with several allosteric activators. Oxalacetate, glutamine, and/or asparagine are modulators causing the MD reaction to become preferred over the FH reaction. Activity profiles as a function of pH suggest a suboptimal FUM activity in Arabidopsis cells; moreover, the direction of the FUM reaction is sensitive to pH changes. Under mild oxidation conditions, AtFUMs form high mass molecular aggregates, which present both FUM activities decreased to a different extent. The biochemical properties of oxidized AtFUMs (oxAtFUMs) were completely reversed by NADPH-supplied Arabidopsis leaf extracts, suggesting that the AtFUMs redox regulation can be accomplished in vivo. Mass spectrometry analyses indicate the presence of an active site-associated intermolecular disulfide bridge in oxAtFUMs. Finally, a phylogenetic approach points out that other plant species may also possess cytosolic FUM2 enzymes mainly encoded by paralogous genes, indicating that the evolutionary history of this trait has been drawn through a process of parallel evolution. Overall, according to our results, a multilevel regulatory pattern of FUM activities emerges, supporting the role of this enzyme as a carbon flow monitoring point through the organic acid metabolism in plants.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis/enzymology , Fumarate Hydratase/chemistry , Fumarates/chemistry , Gene Expression Regulation, Plant , Malate Dehydrogenase/chemistry , Allosteric Regulation , Arabidopsis/chemistry , Arabidopsis/classification , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Asparagine/metabolism , Binding Sites , Evolution, Molecular , Fumarate Hydratase/genetics , Fumarate Hydratase/metabolism , Fumarates/metabolism , Gene Expression , Glutamine/metabolism , Hydrogen-Ion Concentration , Kinetics , Malate Dehydrogenase/genetics , Malate Dehydrogenase/metabolism , Models, Molecular , NADP/metabolism , Oxaloacetic Acid/metabolism , Oxidation-Reduction , Phylogeny , Protein Aggregates , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
7.
Sci Rep ; 8(1): 4380, 2018 03 12.
Article in English | MEDLINE | ID: mdl-29531244

ABSTRACT

Severe droughts are predicted for the twenty-first century, which contrast with the increased demand for plant materials. Thus, to sustain future generations, a great challenge is to improve crop yield and water use efficiency (WUE), which is the carbon gained per water lost. Here, expression of maize NADP-malic enzyme (NADP-ME) in the guard and vascular companion cells of Nicotiana tabacum results in enhanced WUE, earlier flowering and shorter life cycle. Transgenic lines exhibit reduced stomatal aperture than wild-type (WT). Nevertheless, an increased net CO2 fixation rate is observed, which results in less water consumption and more biomass production per water used. Transgenic lines export sugars to the phloem at higher rate than WT, which leads to higher sugars levels in phloem exudates and veins. Leaf quantitative proteomic profiling revealed drastic differences in proteins related to cell cycle, flowering, hormone signaling and carbon metabolism between transgenic lines and WT. We propose that the increased sugar export from leaves in the transgenic lines alleviates sugar negative feedback on photosynthesis and thus, stomatal closure takes place without a penalty in CO2 assimilation rate. This results in improved WUE and accelerated overall life cycle, key traits for plant productivity in the near future world.


Subject(s)
Dehydration/prevention & control , Malate Dehydrogenase/metabolism , Nicotiana/physiology , Plants, Genetically Modified/metabolism , Carbon Dioxide/metabolism , Droughts , Life Cycle Stages , Plant Leaves/metabolism , Plant Stomata , Proteomics/methods , Nicotiana/cytology
8.
FEBS J ; 284(4): 654-665, 2017 02.
Article in English | MEDLINE | ID: mdl-28075062

ABSTRACT

NAD(P)-malic enzyme (NAD(P)-ME) catalyzes the reversible oxidative decarboxylation of malate to pyruvate, CO2 , and NAD(P)H and is present as a multigene family in Arabidopsis thaliana. The carboxylation reaction catalyzed by purified recombinant Arabidopsis NADP-ME proteins is faster than those reported for other animal or plant isoforms. In contrast, no carboxylation activity could be detected in vitro for the NAD-dependent counterparts. In order to further investigate their putative carboxylating role in vivo, Arabidopsis NAD(P)-ME isoforms, as well as the NADP-ME2del2 (with a decreased ability to carboxylate pyruvate) and NADP-ME2R115A (lacking fumarate activation) versions, were functionally expressed in the cytosol of pyruvate carboxylase-negative (Pyc- ) Saccharomyces cerevisiae strains. The heterologous expression of NADP-ME1, NADP-ME2 (and its mutant proteins), and NADP-ME3 restored the growth of Pyc- S. cerevisiae on glucose, and this capacity was dependent on the availability of CO2 . On the other hand, NADP-ME4, NAD-ME1, and NAD-ME2 could not rescue the Pyc- strains from C4 auxotrophy. NADP-ME carboxylation activity could be measured in leaf crude extracts of knockout and overexpressing Arabidopsis lines with modified levels of NADP-ME, where this activity was correlated with the amount of NADP-ME2 transcript. These results indicate that specific A. thaliana NADP-ME isoforms are able to play an anaplerotic role in vivo and provide a basis for the study on the carboxylating activity of NADP-ME, which may contribute to the synthesis of C4 compounds and redox shuttling in plant cells.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/enzymology , Malate Dehydrogenase (NADP+)/genetics , Malates/metabolism , NADP/metabolism , NAD/metabolism , Pyruvic Acid/metabolism , Saccharomyces cerevisiae/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Carbon Dioxide/metabolism , Cloning, Molecular , Gene Expression , Genetic Complementation Test , Genetic Engineering , Glucose/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Malate Dehydrogenase (NADP+)/metabolism , Plant Leaves/enzymology , Plant Leaves/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Transformation, Genetic , Transgenes
9.
PLoS One ; 11(6): e0158040, 2016.
Article in English | MEDLINE | ID: mdl-27347875

ABSTRACT

Malic enzymes (ME) catalyze the decarboxylation of malate generating pyruvate, CO2 and NADH or NADPH. In some organisms it has been established that ME is involved in lipids biosynthesis supplying carbon skeletons and reducing power. In this work we studied the MEs of soybean and castor, metabolically different oilseeds. The comparison of enzymatic activities, transcript profiles and organic acid contents suggest different metabolic strategies operating in soybean embryo and castor endosperm in order to generate precursors for lipid biosynthesis. In castor, the malate accumulation pattern agrees with a central role of this metabolite in the provision of carbon to plastids, where the biosynthesis of fatty acids occurs. In this regard, the genome of castor possesses a single gene encoding a putative plastidic NADP-ME, whose expression level is high when lipid deposition is active. On the other hand, NAD-ME showed an important contribution to the maturation of soybean embryos, perhaps driving the carbon relocation from mitochondria to plastids to support the fatty acids synthesis in the last stages of seed filling. These findings provide new insights into intermediary metabolism in oilseeds and provide new biotechnological targets to improve oil yields.


Subject(s)
Glycine max/enzymology , Malate Dehydrogenase/metabolism , Plant Proteins/metabolism , Ricinus communis/enzymology , Seeds/enzymology , Carbon/metabolism , Ricinus communis/growth & development , Lipid Metabolism , Plastids/metabolism , Seeds/growth & development , Glycine max/growth & development
10.
Plant Cell Rep ; 35(6): 1235-46, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26905727

ABSTRACT

KEY MESSAGE: The results obtained indicate that a ß-xylosidase gene may act as good indicator of chilling tolerance and provide new insights into the complex issue of peach fruit woolliness. The storage of peaches at low temperatures for prolonged periods can induce a form of chilling injury (CI) called woolliness, characterized by a lack of juiciness and a mealy texture. As this disorder has been associated with abnormal cell wall dismantling, the levels of 12 transcripts encoding proteins involved in cell wall metabolism were analysed in cultivars with contrasting susceptibility to this disorder selected from five melting flesh peach cultivars. The resistant ('Springlady') and susceptible ('Flordaking') cultivars displayed differences in the level of expression of some of the selected genes during fruit softening and in woolly versus non-woolly fruits. From these genes, the level of expression of PpXyl, which encodes for a putative ß-xylosidase, was the one that presented the highest correlation (negative) with the susceptibility to woolliness. PpXyl expression was also analysed in a cultivar ('Rojo 2') with intermediate susceptibility to woolliness, reinforcing the conclusion about the correlation of PpXyl expression to the presence of woolliness symptom. Moreover, the level of expression of PpXyl correlated to protein level detected by Western blot. Analyses of the promoter region of the PpXyl gene (1637 bp) isolated from the three cultivars showed no differences suggesting that cis-elements from other regions of the genome and/or trans elements could be responsible of the differential PpXyl expression patterns. Overall, the results obtained indicate that PpXyl may act as a good indicator of woolliness tolerance and that the regulation of expression of this gene in different cultivars does not depend on sequences upstream the coding sequence.


Subject(s)
Cell Wall/genetics , Fruit/genetics , Prunus persica/genetics , Cold Temperature , Electrophoresis, Polyacrylamide Gel , Food Storage , Fruit/physiology , Prunus persica/physiology , Quantitative Trait, Heritable , Real-Time Polymerase Chain Reaction
11.
Plant Sci ; 240: 193-203, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26475199

ABSTRACT

Arabidopsis thaliana has four NADP-dependent malic enzymes (NADP-ME 1-4) for reversible malate decarboxylation, with NADP-ME2 being the only cytosolic isoform ubiquitously expressed and responsible for most of the total activity. In this work, we further investigated its physiological function by characterizing Arabidopsis plants over-expressing NADP-ME2 constitutively. In comparison to wild type, these plants exhibited reduced rosette and root sizes, delayed flowering time and increased sensitivity to mannitol and polyethylene glycol. The increased NADP-ME2 activity led to a decreased expression of other ME and malate dehydrogenase isoforms and generated a redox imbalance with opposite characteristics depending on the time point of the day analyzed. The over-expressing plants also presented a higher content of C4 organic acids and sugars under normal growth conditions. However, the accumulation of these metabolites in the over-expressing plants was substantially less pronounced after osmotic stress exposure compared to wild type. Also, a lower level of several amino acids and osmoprotector compounds was observed in transgenic plants. Thus, the gain of NADP-ME2 expression has profound consequences in the modulation of primary metabolism in A. thaliana, which reflect the relevance of this enzyme and its substrates and products in plant homeostasis.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Gene Expression Regulation, Plant , Malate Dehydrogenase (NADP+)/genetics , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Circadian Rhythm , Gene Expression Regulation, Enzymologic , Malate Dehydrogenase (NADP+)/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/physiology , Stress, Physiological
12.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 10): 2009-20, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26457425

ABSTRACT

The glyoxalase system is ubiquitous among all forms of life owing to its central role in relieving the cell from the accumulation of methylglyoxal, a toxic metabolic byproduct. In higher plants, this system is upregulated under diverse metabolic stress conditions, such as in the defence response to infection by pathogenic microorganisms. Despite their proven fundamental role in metabolic stresses, plant glyoxalases have been poorly studied. In this work, glyoxalase I from Zea mays has been characterized both biochemically and structurally, thus reporting the first atomic model of a glyoxalase I available from plants. The results indicate that this enzyme comprises a single polypeptide with two structurally similar domains, giving rise to two lateral concavities, one of which harbours a functional nickel(II)-binding active site. The putative function of the remaining cryptic active site remains to be determined.


Subject(s)
Lactoylglutathione Lyase/chemistry , Zea mays/chemistry , Zea mays/enzymology , Amino Acid Sequence , Catalytic Domain , Cloning, Molecular , Crystallography, X-Ray , Lactoylglutathione Lyase/genetics , Lactoylglutathione Lyase/metabolism , Models, Molecular , Molecular Sequence Data , Nickel/metabolism , Protein Conformation , Sequence Alignment , Zea mays/genetics , Zea mays/metabolism
13.
Plant Physiol Biochem ; 90: 38-49, 2015 May.
Article in English | MEDLINE | ID: mdl-25767913

ABSTRACT

Portulaca oleracea is one of the richest plant sources of ω-3 and ω-6 fatty acids and other compounds potentially valuable for nutrition. It is broadly established in arid, semiarid and well-watered fields, thus making it a promising candidate for research on abiotic stress resistance mechanisms. It is capable of withstanding severe drought and then of recovering upon rehydration. Here, the adaptation to drought and the posterior recovery was evaluated at transcriptomic level by differential display validated by qRT-PCR. Of the 2279 transcript-derived fragments amplified, 202 presented differential expression. Ninety of them were successfully isolated and sequenced. Selected genes were tested against different abiotic stresses in P. oleracea and the behavior of their orthologous genes in Arabidopsis thaliana was also explored to seek for conserved response mechanisms. In drought adapted and in recovered plants changes in expression of many protein metabolism-, lipid metabolism- and stress-related genes were observed. Many genes with unknown function were detected, which also respond to other abiotic stresses. Some of them are also involved in the seed desiccation/imbibition process and thus would be of great interest for further research. The potential use of candidate genes to engineer drought tolerance improvement and recovery is discussed.


Subject(s)
Adaptation, Physiological , Droughts , Genes, Plant , Plant Proteins/genetics , Portulaca/genetics , Stress, Physiological , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Leaves , Plant Proteins/metabolism , Polymerase Chain Reaction , Portulaca/metabolism , Seeds , Transcriptome , Water
14.
Phytochemistry ; 111: 37-47, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25433630

ABSTRACT

Plant mitochondria can use L-malate and fumarate, which accumulate in large levels, as respiratory substrates. In part, this property is due to the presence of NAD-dependent malic enzymes (NAD-ME) with particular biochemical characteristics. Arabidopsis NAD-ME1 exhibits a non-hyperbolic behavior for the substrate L-malate, and its activity is strongly stimulated by fumarate. Here, the possible structural connection between these properties was explored through mutagenesis, kinetics, and fluorescence studies. The results indicated that NAD-ME1 has a regulatory site for L-malate that can also bind fumarate. L-Malate binding to this site elicits a sigmoidal and low substrate-affinity response, whereas fumarate binding turns NAD-ME1 into a hyperbolic and high substrate affinity enzyme. This effect was also observed when the allosteric site was either removed or altered. Hence, fumarate is not really an activator, but suppresses the inhibitory effect of l-malate. In addition, residues Arg50, Arg80 and Arg84 showed different roles in organic acid binding. These residues form a triad, which is the basis of the homo and heterotrophic effects that characterize NAD-ME1. The binding of L-malate and fumarate at the same allosteric site is herein reported for a malic enzyme and clearly indicates an important role of NAD-ME1 in processes that control flow of C4 organic acids in Arabidopsis mitochondrial metabolism.


Subject(s)
Arabidopsis/metabolism , Fumarates/pharmacology , Allosteric Site , Arabidopsis/enzymology , Kinetics , Malate Dehydrogenase/drug effects , Malates/metabolism , Mitochondria/metabolism , Molecular Sequence Data , NAD/metabolism
15.
Microbiology (Reading) ; 160(Pt 12): 2794-2806, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25294105

ABSTRACT

Phytoplasmas ('Candidatus Phytoplasma') are insect-vectored plant pathogens. The genomes of these bacteria are small with limited metabolic capacities making them dependent on their plant and insect hosts for survival. In contrast to mycoplasmas and other relatives in the class Mollicutes, phytoplasmas encode genes for malate transporters and malic enzyme (ME) for conversion of malate into pyruvate. It was hypothesized that malate is probably a major energy source for phytoplasmas as these bacteria are limited in the uptake and processing of carbohydrates. In this study, we investigated the metabolic capabilities of 'Candidatus (Ca.) phytoplasma' aster yellows witches'-broom (AYWB) malic enzyme (ME). We found that AYWB-ME has malate oxidative decarboxylation activity, being able to convert malate to pyruvate and CO2 with the reduction of either NAD or NADP, and displays distinctive kinetic mechanisms depending on the relative concentration of the substrates. AYWB-ME activity was strictly modulated by the ATP/ADP ratio, a feature which has not been found in other ME isoforms characterized to date. In addition, we found that the 'Ca. Phytoplasma' AYWB PduL-like enzyme (AYWB-PduL) harbours phosphotransacetylase activity, being able to convert acetyl-CoA to acetyl phosphate downstream of pyruvate. ATP also inhibited AYWB-PduL activity, as with AYWB-ME, and the product of the reaction catalysed by AYWB-PduL, acetyl phosphate, stimulated AYWB-ME activity. Overall, our data indicate that AYWB-ME and AYWB-PduL activities are finely coordinated by common metabolic signals, like ATP/ADP ratios and acetyl phosphate, which support their participation in energy (ATP) and reducing power [NAD(P)H] generation from malate in phytoplasmas.


Subject(s)
Energy Metabolism , Gene Expression Regulation, Enzymologic , Malate Dehydrogenase/metabolism , Malates/metabolism , Phosphate Acetyltransferase/metabolism , Phytoplasma/enzymology , Phytoplasma/metabolism , Acetyl Coenzyme A/metabolism , Carbon Dioxide/metabolism , Gene Expression Regulation, Bacterial , NAD/metabolism , NADP/metabolism , Phytoplasma/genetics , Pyruvic Acid/metabolism
16.
J Biol Inorg Chem ; 19(7): 1149-64, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24951240

ABSTRACT

Metallothioneins (MTs) are a superfamily of Cys-rich, low-molecular weight metalloproteins that bind heavy metal ions. These cytosolic metallopeptides, which exist in most living organisms, are thought to be involved in metal homeostasis, metal detoxification, and oxidative stress protection. In this work, we characterise the Zn(II)- and Cd(II)-binding abilities of plant type 3 and type 4 MTs identified in soybean and sunflower, both of them being His-containing peptides. The recombinant metal-MT complexes synthesised in Zn(II) or Cd(II)-enriched Escherichia coli cultures have been analysed by ESI-MS, and CD, ICP-AES, and UV spectroscopies. His-to-Ala type 3 MT mutants have also been constructed and synthesised for the study of the role of His in divalent metal ion coordination. The results show comparable divalent metal-binding capacities for the MTs of type 3, and suggest, for the first time, the participation of their conserved C-term His residues in metal binding. Interesting features for the Zn(II)-binding abilities of type 4 MTs are also reported, as their variable His content may be considered crucial for their biological performance.


Subject(s)
Cadmium/metabolism , Glycine max/metabolism , Helianthus/metabolism , Metallothionein/metabolism , Plant Proteins/metabolism , Zinc/metabolism , Amino Acid Sequence , Genes, Plant , Helianthus/chemistry , Helianthus/genetics , Metallothionein/chemistry , Metallothionein/genetics , Molecular Sequence Data , Plant Proteins/chemistry , Plant Proteins/genetics , Protein Binding , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Glycine max/chemistry , Glycine max/genetics
17.
Physiol Plant ; 152(3): 414-30, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24655215

ABSTRACT

Portulaca oleracea is a C(4) plant; however, under drought it can change its carbon fixation metabolism into a crassulacean acid metabolism (CAM)-like one. While the C(3) -CAM shift is well known, the C(4) -CAM transition has only been described in Portulaca. Here, a CAM-like metabolism was induced in P. oleracea by drought and then reversed by re-watering. Physiological and biochemical approaches were undertaken to evaluate the drought and recovery responses. In CAM-like plants, chlorophyll fluorescence parameters were transitory affected and non-radiative energy dissipation mechanisms were induced. Induction of flavonoids, betalains and antioxidant machinery may be involved in photosynthetic machinery protection. Metabolic analysis highlights a clear metabolic shift, when a CAM-like metabolism is induced and then reversed. Increases in nitrogenous compounds like free amino acids and urea, and of pinitol could contribute to withstand drought. Reciprocal variations in arginase and urease in drought-stressed and in re-watered plants suggest urea synthesis is strictly regulated. Recovery of C(4) metabolism was accounted by CO(2) assimilation pattern and malate levels. Increases in glycerol and in polyamines would be of importance of re-watered plants. Collectively, in P. oleracea multiple strategies, from induction of several metabolites to the transitory development of a CAM-like metabolism, participate to enhance its adaptation to drought.


Subject(s)
Adaptation, Physiological , Photosynthesis/physiology , Portulaca/physiology , Water/physiology , Carbon Dioxide/metabolism , Droughts , Plant Leaves/physiology
18.
Plant Cell Environ ; 37(3): 601-16, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23937123

ABSTRACT

Peaches are highly perishable and deteriorate quickly at ambient temperature. Cold storage is commonly used to prevent fruit decay; however, it affects fruit quality causing physiological disorders collectively termed 'chilling injury' (CI). To prevent or ameliorate CI, heat treatment is often applied prior to cold storage. In the present work, metabolic profiling was performed to determine the metabolic dynamics associated with the induction of acquired CI tolerance in response to heat shock. 'Dixiland' peach fruits exposed to 39 °C, cold stored, or after a combined treatment of heat and cold, were compared with fruits ripening at 20 °C. Dramatic changes in the levels of compatible solutes such as galactinol and raffinose were observed, while amino acid precursors of the phenylpropanoid pathway were also modified due to the stress treatments, as was the polyamine putrescine. The observed responses towards temperature stress in peaches are composed of both common and specific response mechanisms to heat and cold, but also of more general adaptive responses that confer strategic advantages in adverse conditions such as biotic stresses. The identification of such key metabolites, which prime the fruit to cope with different stress situations, will likely greatly accelerate the design and the improvement of plant breeding programs.


Subject(s)
Cold Temperature , Fruit/metabolism , Fruit/physiology , Hot Temperature , Metabolic Networks and Pathways , Prunus/metabolism , Prunus/physiology , Fruit/genetics , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation, Plant , Metabolic Networks and Pathways/genetics , Metabolome/genetics , Metabolomics , Nitrogen/metabolism , Principal Component Analysis , Prunus/genetics , Quantitative Trait, Heritable , RNA, Messenger/genetics , RNA, Messenger/metabolism , Raffinose/metabolism
19.
Funct Plant Biol ; 41(4): 411-423, 2014 Apr.
Article in English | MEDLINE | ID: mdl-32481001

ABSTRACT

Glycine-rich RNA-binding proteins (GRPs) are involved in the modulation of the post-transcriptional processing of transcripts and participate as an output signal of the circadian clock. However, neither GRPs nor the circadian rhythmic have been studied in detail in fleshy fruits as yet. In the present work, the GRP1 gene family was analysed in Micro-Tom tomato (Solanum lycopersicum L.) fruit. Three highly homologous LeGRP1 genes (LeGRP1a-c) were identified. For each gene, three products were found, corresponding to the unspliced precursor mRNA (pre-mRNA), the mature mRNA and the alternatively spliced mRNA (preLeGRP1a-c, mLeGRP1a-c and asLeGRP1a-c, respectively). Tomato GRPs (LeGRPs) show the classic RNA recognition motif and glycine-rich region, and were found in the nucleus and in the cytosol of tomato fruit. By using different Escherichia coli mutants, it was found that LeGRP1s contained in vivo RNA-melting abilities and were able to complement the cold-sensitive phenotype of BX04 cells. Particular circadian profiles of expression, dependent on the fruits' developmental stage, were found for each LeGRP1 form. During ripening off the vine of fruits harvested at the mature green stage, the levels of all LeGRP1a-c forms drastically increased; however, incubation at 4°C prevented such increases. Analysis of the expression of all LeGRP1a-c forms suggests a positive regulation of expression in tomato fruit. Overall, the results obtained in this work reveal a complex pattern of expression of GRPs in tomato fruit, suggesting they might be involved in post-transcriptional modulation of circadian processes of this fleshy fruit.

20.
Photosynth Res ; 117(1-3): 177-87, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23832612

ABSTRACT

C4 photosynthesis enables the capture of atmospheric CO2 and its concentration at the site of RuBisCO, thus counteracting the negative effects of low atmospheric levels of CO2 and high atmospheric levels of O2 (21 %) on photosynthesis. The evolution of this complex syndrome was a multistep process. It did not occur by simply recruiting pre-exiting components of the pathway from C3 ancestors which were already optimized for C4 function. Rather it involved modifications in the kinetics and regulatory properties of pre-existing isoforms of non-photosynthetic enzymes in C3 plants. Thus, biochemical studies aimed at elucidating the functional adaptations of these enzymes are central to the development of an integrative view of the C4 mechanism. In the present review, the most important biochemical approaches that we currently use to understand the evolution of the C4 isoforms of malic enzyme are summarized. It is expected that this information will help in the rational design of the best decarboxylation processes to provide CO2 for RuBisCO in engineering C3 species to perform C4 photosynthesis.


Subject(s)
Biological Evolution , Carbon/metabolism , Malate Dehydrogenase/metabolism , Photosynthesis , DNA, Plant/metabolism , Kinetics , Malate Dehydrogenase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...