Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 249: 126110, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37536419

ABSTRACT

Human ribonuclease (RNase) 1 and bovine RNase A are the proto-types of the secretory "pancreatic-type" (pt)-RNase super-family. RNase A can oligomerize through the 3D domain swapping (DS) mechanism upon acetic acid (HAc) lyophilisation, producing enzymatically active oligomeric conformers by swapping both N- and C-termini. Also some RNase 1 mutants were found to self-associate through 3D-DS, however forming only N-swapped dimers. Notably, enzymatically active dimers and larger oligomers of wt-RNase 1 were collected here, in higher amount than RNase A, from HAc lyophilisation. In particular, RNase 1 self-associates through the 3D-DS of its N-terminus and, at a higher extent, of the C-terminus. Since RNase 1 is four-residues longer than RNase A, we further analyzed its oligomerization tendency in a mutant lacking the last four residues. The C-terminus role has been investigated also in amphibian onconase (ONC®), a pt-RNase that can form only a N-swapped dimer, since its C-terminus, that is three-residues longer than RNase A, is locked by a disulfide bond. While ONC mutants designed to unlock or cut this constraint were almost unable to dimerize, the RNase 1 mutant self-associated at a higher extent than the wt, suggesting a specific role of the C-terminus in the oligomerization of different RNases. Overall, RNase 1 reaches here the highest ability, among pt-RNases, to extensively self-associate through 3D-DS, paving the way for new investigations on the structural and biological properties of its oligomers.


Subject(s)
Ribonuclease, Pancreatic , Ribonucleases , Humans , Animals , Cattle , Ribonuclease, Pancreatic/chemistry , Ribonucleases/chemistry , Endoribonucleases/genetics , Endoribonucleases/chemistry , Protein Domains , Dimerization
2.
Chem Commun (Camb) ; 59(33): 4970-4973, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37016922

ABSTRACT

We report the synthesis and characterisation of [2]rotaxanes based on a stilbazolium dye and a calix[6]arene macrocycle. Since both components are non-symmetric, two orientational isomers are obtained. The two isomers display distinct photophysical and photochemical properties in solution and solid state, superior to the unencapsulated dye.

3.
Chemistry ; 29(22): e202203472, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-36929373

ABSTRACT

We report the synthesis and characterization, by means of NMR and UV-visible spectroscopy and electrochemical techniques, of a dansyl calix[6]arene derivative and of its pseudorotaxane complex with a bipyridinium-based axle. This novel macrocycle shows remarkable complexation ability, in analogy with parent compounds, while the dansyl moieties impart valuable features to the system. Indeed, these units: i) signal the state of the system by fluorescence; ii) can be reversibly protonated, enabling the modulation of the complexation abilities of the macrocycle; iii) participate in photoinduced electron transfer processes, which may be exploited to tune the stability of the supramolecular complex. Therefore, in this multiresponsive pseudorotaxane, the threading and de-threading motions of the molecular components can be modulated either by protonation of the calixarene host or by reduction of the bipyridinium guest, which can be accomplished both by electrochemical reduction and via photoinduced electron transfer. Overall, three orthogonal and reversible stimuli can be used to induce molecular movements of the pseudorotaxane components.

4.
Photochem Photobiol Sci ; 21(5): 825-833, 2022 May.
Article in English | MEDLINE | ID: mdl-35034332

ABSTRACT

Chemical actinometers are a useful tool in photochemistry, which allows to measure the photon flux of a light source to carry out quantitative analysis on photoreactions. The most commonly employed actinometers so far show minor drawbacks, such as difficult data treatment, parasite reactions, low stability or impossible reset. We propose herewith the use of 4,4'-dimethylazobenzene as a chemical actinometer. This compound undergoes a clean and efficient E/Z isomerization, approaching total conversion upon irradiation at 365 nm. Thanks to its properties, it can be used to determine the photon flux in the UV-visible region, with simple experimental methods and data treatment, and with the possibility to be reused after photochemical or thermal reset.


Subject(s)
Photons , Photochemistry/methods
5.
Energy Fuels ; 35(23): 18900-18914, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34887620

ABSTRACT

The exploitation of sunlight as a clean, renewable, and distributed energy source is key to facing the energetic demand of modern society in a sustainable and affordable fashion. In the past few decades, chemists have learned to make molecular machines, that is, synthetic chemical systems in which energy inputs cause controlled movements of molecular components that could be used to perform a task. A variety of artificial molecular machines operated by light have been constructed by implementing photochemical processes within appropriately designed (supra)molecular assemblies. These studies could open up new routes for the realization of nanostructured devices and materials capable to harness, convert, and store light energy.

6.
Chem Sci ; 12(18): 6419-6428, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34084442

ABSTRACT

Tris(phenylureido)calix[6]arene is endowed with unique properties that make it a valuable macrocyclic component for the synthesis of mechanically interlocked molecules. Its three-dimensional and intrinsically nonsymmetric structure is kinetically selective toward two processes: (i) in apolar media, the threading of bipyridinium based axle-like components takes place exclusively from the upper rim; (ii) SN2 alkylation reactions of a pyridylpyridinium precursor engulfed in the cavity occur selectively at pyridylpyridinium nitrogen atom located at the macrocycle upper rim (active template synthesis). Here we exploit such properties to prepare two series of [3]rotaxanes, each consisting of three sequence isomers that arise from the threading of two identical but nonsymmetric wheels on a symmetric thread differing only for the reciprocal orientation of the macrocycles. The features of the calix[6]arene and the active template synthetic approach, together with a careful selection of the precursors, enabled us to selectively synthesise the [3]rotaxane sequence isomers of each series with fast kinetics and high yields.

7.
Chemistry ; 25(71): 16328-16339, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31603576

ABSTRACT

The design and synthesis of two families of molecular-gear prototypes is reported, with the aim of assembling them into trains of gears on a surface and ultimately achieving controlled intermolecular gearing motion. These piano-stool ruthenium complexes incorporate a hydrotris(indazolyl)borate moiety as tripodal rotation axle and a pentaarylcyclopentadienyl ligand as star-shaped cogwheel, equipped with five teeth ranging from pseudo-1D aryl groups to large planar 2D paddles. A divergent synthetic approach was followed, starting from a pentakis(p-bromophenyl)cyclopentadienyl ruthenium(II) complex as key precursor or from its iodinated counterpart, obtained by copper-catalyzed aromatic Br/I exchange. Subsequent fivefold cross-coupling reactions with various partners allowed high structural diversity to be reached and yielded molecular-gear prototypes with aryl-, carbazole-, BODIPY- and porphyrin-derived teeth of increasing size and length.

SELECTION OF CITATIONS
SEARCH DETAIL
...