Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Children (Basel) ; 10(7)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37508616

ABSTRACT

Individuals with specific language impairment (SLI) struggle with language acquisition despite average non-verbal intelligence and otherwise typical development. One SLI account focuses on grammar acquisition delay. The current study aimed to detect novel rare genetic variants associated with performance on a grammar assessment, the Test of Early Grammatical Impairment (TEGI), in English-speaking children. The TEGI was selected due to its sensitivity and specificity, consistently high heritability estimates, and its absence from all but one molecular genetic study. We performed whole exome sequencing (WES) in eight families with SLI (n = 74 total) and follow-up Sanger sequencing in additional unrelated probands (n = 146). We prioritized rare exonic variants shared by individuals with low TEGI performance (n = 34) from at least two families under two filtering workflows: (1) novel and (2) previously reported candidate genes. Candidate variants were observed on six new genes (PDHA2, PCDHB3, FURIN, NOL6, IQGAP3, and BAHCC1), and two genes previously reported for overall language ability (GLI3 and FLNB). We specifically suggest PCDHB3, a protocadherin gene, and NOL6 are critical for ribosome synthesis, as they are important targets of SLI investigation. The proposed SLI candidate genes associated with TEGI performance emphasize the utility of precise phenotyping and family-based genetic study.

2.
Ann Hum Biol ; 50(1): 100-107, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36786444

ABSTRACT

BACKGROUND: Runs of homozygosity (ROHs) analysis of controls provide a convenient resource to minimize the association of false positive results of disease-associated ROHs and genetic variants for simple and complex disorders in individuals from the same population. Evidence for the value of ROHs to speech or language-related traits is restricted due to the absence of population-matched behaviourally defined controls and limited family-based studies. AIM: This study aims to identify common ROHs in the Pakistani population, focussing on the total length and frequency of ROHs of variable sizes, shared ROHs, and their genomic distribution. SUBJECTS AND METHODS: We performed homozygosity analysis (in PLINK) of 86 individuals (39 males, 47 females) with no history of speech or language-related phenotypes (controls) who had been genotyped with the Illumina Infinium QC Array-24. RESULTS: ROHs of 1-<4 megabases (Mb) were frequent in unrelated individuals. We observed ROHs over 20 Mb among six individuals. Over 30 percent of the identified ROHs were shared among several individuals, indicating consanguinity's effect on the Pakistani population. CONCLUSION: Our findings serve as a foundation for family-based genetic studies of consanguineous families with speech or language-related disorders to ultimately narrow the homozygosity regions of interest to identify pathogenic variants.


Subject(s)
Language , Polymorphism, Single Nucleotide , Male , Female , Humans , Pakistan , Homozygote , Phenotype
3.
Meta Gene ; 302021 Dec.
Article in English | MEDLINE | ID: mdl-34540591

ABSTRACT

Language impairment (LI) is highly heritable and aggregates in families. Genetic investigation of LI has revealed many chromosomal regions and genes of interest, though very few studies have focused on rare variant analysis in non-English speaking or non-European samples. We selected four candidate genes (TM4SF20, NFXL1, CNTNAP2 and ATP2C2) strongly suggested for specific language impairment (SLI), a subtype of LI, and investigated rare protein coding variants through Sanger sequencing of probands with LI ascertained from Pakistan. The probands and their family members completed a speech and language family history questionnaire and a vocabulary measure, the Peabody Picture Vocabulary Test-fourth edition (PPVT-4), translated to Urdu, the national language of Pakistan. Our study aimed to determine the significance of rare variants in these SLI candidate genes through segregation analysis in a novel population with a high rate of consanguinity. In total, we identified 16 rare variants (according to the rare MAF in the global population in gnomAD v2.1.1 database exomes), including eight variants with a MAF <0.5 % in the South Asian population. Most of the identified rare variants aggregated in proband's families, one rare variant (c.*9T>C in CNTNAP2) co-segregated in a small family (PKSLI-64) and another (c.2465C>T in ATP2C2) co-segregated in the proband branch (PKSLI-27). The lack of complete co-segregation of most of the identified rare variants indicates that while these genes could be involved in overall risk for LI, other genes are likely involved in LI in this population. Future investigation of these consanguineous families has the potential to expand our understanding of gene function related to language acquisition and impairment.

4.
Brain Sci ; 12(1)2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35053791

ABSTRACT

Specific language impairment (SLI) is a common neurodevelopmental disorder (NDD) that displays high heritability estimates. Genetic studies have identified several loci, but the molecular basis of SLI remains unclear. With the aim to better understand the genetic architecture of SLI, we performed whole-exome sequencing (WES) in a single family (ID: 489; n = 11). We identified co-segregating rare variants in three new genes: BUD13, APLP2, and NDRG2. To determine the significance of these genes in SLI, we Sanger sequenced all coding regions of each gene in unrelated individuals with SLI (n = 175). We observed 13 additional rare variants in 18 unrelated individuals. Variants in BUD13 reached genome-wide significance (p-value < 0.01) upon comparison with similar variants in the 1000 Genomes Project, providing gene level evidence that BUD13 is involved in SLI. Additionally, five BUD13 variants showed cohesive variant level evidence of likely pathogenicity. Bud13 is a component of the retention and splicing (RES) complex. Additional supportive evidence from studies of an animal model (loss-of-function mutations in BUD13 caused a profound neural phenotype) and individuals with an NDD phenotype (carrying a CNV spanning BUD13), indicates BUD13 could be a target for investigation of the neural basis of language.

5.
J Speech Lang Hear Res ; 63(12): 4046-4061, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33186502

ABSTRACT

Purpose Specific language impairment (SLI) is characterized by a delay in language acquisition despite a lack of other developmental delays or hearing loss. Genetics of SLI is poorly understood. The purpose of this study is to identify SLI genetic loci through family-based linkage mapping. Method We performed genome-wide parametric linkage analysis in six families segregating with SLI. An age-appropriate standardized omnibus language measure was used to categorically define the SLI phenotype. Results A suggestive linkage region replicated a previous region of interest with the highest logarithm of odds (LOD) score of 2.40 at 14q11.2-q13.3 in Family 489. A paternal parent-of-origin effect associated with SLI and language phenotypes on a nonsynonymous single nucleotide polymorphism (SNP) in NOP9 (14q12) was reported previously. Linkage analysis identified a new SLI locus at 15q24.3-25.3 with the highest parametric LOD score of 3.06 in Family 315 under a recessive mode of inheritance. Suggestive evidence of linkage was also revealed at 4q31.23-q35.2 in Family 300, with the highest LOD score of 2.41. Genetic linkage was not identified in the other three families included in parametric linkage analysis. Conclusions These results are the first to report genome-wide suggestive linkage with a total language standard score on an age-appropriate omnibus language measure across a wide age range. Our findings confirm previous reports of a language-associated locus on chromosome 14q, report new SLI loci, and validate the pedigree-based parametric linkage analysis approach to mapping genes for SLI. Supplemental Material https://doi.org/10.23641/asha.13203218.


Subject(s)
Specific Language Disorder , Chromosome Mapping , Genetic Predisposition to Disease/genetics , Humans , Lod Score , Pedigree
6.
Eur J Hum Genet ; 27(8): 1274-1285, 2019 08.
Article in English | MEDLINE | ID: mdl-30976110

ABSTRACT

Language is a uniquely human ability, and failure to attain this ability can have a life-long impact on the affected individuals. This is particularly true for individuals with specific language impairment (SLI), which is defined as an impairment in normal language development in the absence of any other developmental disability. Although SLI displays high heritability, family-based linkage studies have been hampered by an unclear mode of Mendelian segregation, variable disease penetrance, and heterogeneity of diagnostic criteria. We performed genome-wide parametric linkage analysis and homozygosity mapping in 14 consanguineous families from Pakistan segregating SLI. Linkage analysis revealed a multipoint LOD score of 4.18 at chromosome 2q in family PKSLI05 under a recessive mode of inheritance. A second linkage score of 3.85 was observed in family PKSLI12 at a non-overlapping locus on chromosome 2q. Two other suggestive linkage loci were found in family PKSLI05 on 14q and 22q with LOD scores of 2.37 and 2.23, respectively, that were also identified in homozygosity mapping. Reduction to homozygosity was observed on chromosomes 2q, 5p, 8q, 14q, 17q, and 22q. Each homozygosity region occurred in multiple PKSLI families. We report new SLI loci on chromosomes 2 and 8 and confirm suggestive SLI linkage loci on chromosomes 5, 14, 17, and 22 reported previously in the population of Robinson Crusoe Island. These findings indicate that linkage and homozygosity mapping in consanguineous families can improve genetic analyses in SLI and suggest the involvement of additional genes in the causation of this disorder.


Subject(s)
Genetic Loci/genetics , Genetic Predisposition to Disease/genetics , Genome, Human/genetics , Genome-Wide Association Study/methods , Specific Language Disorder/genetics , Chromosome Mapping , Consanguinity , Family Health , Female , Humans , Lod Score , Male , Pakistan , Pedigree , Phenotype , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...