Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomaterials ; 279: 121187, 2021 12.
Article in English | MEDLINE | ID: mdl-34678648

ABSTRACT

In recent decades, an increasing number of tissue engineered bone grafts have been developed. However, expensive and laborious screenings in vivo are necessary to assess the safety and efficacy of their formulations. Rodents are the first choice for initial in vivo screens but their size limits the dimensions and number of the bone grafts that can be tested in orthotopic locations. Here, we report the development of a refined murine subcutaneous model for semi-orthotopic bone formation that allows the testing of up to four grafts per mouse one order of magnitude greater in volume than currently possible in mice. Crucially, these defects are also "critical size" and unable to heal within the timeframe of the study without intervention. The model is based on four bovine bone implants, ring-shaped, where the bone healing potential of distinct grafts can be evaluated in vivo. In this study we demonstrate that promotion and prevention of ossification can be assessed in our model. For this, we used a semi-automatic algorithm for longitudinal micro-CT image registration followed by histological analyses. Taken together, our data supports that this model is suitable as a platform for the real-time screening of bone formation, and provides the possibility to study bone resorption, osseointegration and vascularisation.


Subject(s)
Bone Regeneration , Regenerative Medicine , Animals , Biocompatible Materials , Cattle , Mice , Osteogenesis , Tissue Engineering , Tissue Scaffolds
2.
Bone ; 150: 115999, 2021 09.
Article in English | MEDLINE | ID: mdl-33971315

ABSTRACT

During skeletal development most bones are first formed as cartilage templates, which are gradually replaced by bone. If later in life those bones break, temporary cartilage structures emerge to bridge the fractured ends, guiding the regenerative process. This bone formation process, known as endochondral ossification (EO), has been widely studied for its potential to reveal factors that might be used to treat patients with large bone defects. The extracellular matrix of cartilage consists of different types of collagens, proteoglycans and a variety of non-collagenous proteins that organise the collagen fibers in complex networks. Thrombospondin-5, also known as cartilage oligomeric matrix protein (TSP-5/COMP) is abundant in cartilage, where it has been described to enhance collagen fibrillogenesis and to interact with a variety of growth factors, matrix proteins and cellular receptors. However, very little is known about the skeletal distribution of its homologue thrombospondin-4 (TSP-4). In our study, we compared the spatiotemporal expression of TSP-5 and TSP-4 during postnatal bone formation and fracture healing. Our results indicate that in both these settings, TSP-5 distributes across all layers of the transient cartilage, while the localisation of TSP-4 is restricted to the population of hypertrophic chondrocytes. Furthermore, in fractured bones we observed TSP-4 sparsely distributed in the periosteum, while TSP-5 was absent. Last, we analysed the chemoattractant effects of the two proteins on endothelial cells and bone marrow stem cells and hypothesised that, of the two thrombospondins, only TSP-4 might promote blood vessel invasion during ossification. We conclude that TSP-4 is a novel factor involved in bone formation. These findings reveal TSP-4 as an attractive candidate to be evaluated for bone tissue engineering purposes.


Subject(s)
Endothelial Cells , Osteogenesis , Cartilage , Cartilage Oligomeric Matrix Protein , Chondrocytes , Humans , Thrombospondins
3.
Eur Cell Mater ; 38: 106-122, 2019 09 18.
Article in English | MEDLINE | ID: mdl-31532540

ABSTRACT

in tissue engineering, endochondral ossification (EO) is often replicated by chondrogenically differentiating mesenchymal stromal cells (MSCs) in vitro and achieving bone formation through in vivo implantation. The resulting marrow-containing bone constructs are promising as a treatment for bone defects. However, limited bone formation capacity has prevented them from reaching their full potential. This is further complicated since it is not fully understood how this bone formation is achieved. Acellular grafts derived from chondrogenically differentiated MSCs can initiate bone formation; however, which component within these decellularised matrices contribute to bone formation has yet to be determined. Collagen type X (COLX), a hypertrophy-associated collagen found within these constructs, is involved in matrix organisation, calcium binding and matrix vesicle compartmentalisation. However, the importance of COLX during tissue-engineered chondrogenesis and subsequent bone formation is unknown. The present study investigated the importance of COLX by shRNA-mediated gene silencing in primary MSCs. A significant knock-down of COLX disrupted the production of extracellular matrix key components and the secretion profile of chondrogenically differentiated MSCs. Following in vivo implantation, disrupted bone formation in knock-down constructs was observed. The importance of COLX was confirmed during both chondrogenic differentiation and subsequent EO in this tissue engineered setting.


Subject(s)
Cartilage/metabolism , Chondrogenesis , Collagen Type X/metabolism , Mesenchymal Stem Cells/metabolism , Osteogenesis , Animals , Cartilage/cytology , Cartilage/physiology , Cells, Cultured , Child , Chondrocytes/cytology , Chondrocytes/metabolism , Collagen Type X/genetics , Humans , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred BALB C , Mice, Nude
SELECTION OF CITATIONS
SEARCH DETAIL
...